메뉴 건너뛰기




Volumn 31, Issue 11, 2009, Pages 2088-2092

A small sphere and large margin approach for novelty detection using training data with outliers

Author keywords

Kernel methods; Novelty detection; One class classification; Support vector machine

Indexed keywords

BASIC IDEA; CONVEX OPTIMIZATION PROBLEMS; KERNEL METHODS; NOVELTY DETECTION; ONE-CLASS CLASSIFICATION; SMALL SPHERES; TRAINING DATA;

EID: 70349915779     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2009.24     Document Type: Article
Times cited : (192)

References (24)
  • 1
    • 0001279951 scopus 로고    scopus 로고
    • A Linear Programming Approach to Novelty Detection
    • Y. Weiss, B. Schölkopf, and J. Platt, eds, MIT Press
    • C. Campbell and K.P. Bennett, "A Linear Programming Approach to Novelty Detection," Y. Weiss, B. Schölkopf, and J. Platt, eds., Advances in Neural Information Processing Systems 12, MIT Press, 2000.
    • (2000) Advances in Neural Information Processing Systems 12
    • Campbell, C.1    Bennett, K.P.2
  • 2
    • 0041339696 scopus 로고    scopus 로고
    • Modified Support Vector Novelty Detector Using Training Data with Outliers
    • L.J. Cao, H.P. Lee, and W.K. Chong, "Modified Support Vector Novelty Detector Using Training Data with Outliers," Pattern Recognition Letters, vol. 24, pp. 2479-2487, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , pp. 2479-2487
    • Cao, L.J.1    Lee, H.P.2    Chong, W.K.3
  • 3
    • 70349961853 scopus 로고    scopus 로고
    • C.-C. Chang and C.-J. Lin, LIBSVM: A Library for Support Vector Machines, the LIBSVM software package is available at http:// www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.
    • C.-C. Chang and C.-J. Lin, "LIBSVM: A Library for Support Vector Machines," the LIBSVM software package is available at http:// www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.
  • 4
    • 0038895405 scopus 로고    scopus 로고
    • Training v-Support Vector Classifiers: Theory and Algorithms
    • C.-C. Chang and C.-J. Lin, "Training v-Support Vector Classifiers: Theory and Algorithms," Neural Computation, vol. 14, pp. 1959-1977, 2002.
    • (2002) Neural Computation , vol.14 , pp. 1959-1977
    • Chang, C.-C.1    Lin, C.-J.2
  • 5
    • 0036161011 scopus 로고    scopus 로고
    • Choosing Multiple Parameters for Support Vector Machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing Multiple Parameters for Support Vector Machines," Machine Learning vol. 46, nos. 1-3, pp. 131-159, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 7
    • 0003573483 scopus 로고
    • Minima of Functions of Several Variables with Inequalities as Side Constraints,
    • master's thesis, Dept. of Math, Univ. of Chicago
    • W. Karush, "Minima of Functions of Several Variables with Inequalities as Side Constraints," master's thesis, Dept. of Math., Univ. of Chicago, 1939.
    • (1939)
    • Karush, W.1
  • 10
    • 0036161029 scopus 로고    scopus 로고
    • Support Vector Machine for Classification in Nonstandard Situations
    • Y. Lin, Y. Lee, and G. Wahba, "Support Vector Machine for Classification in Nonstandard Situations," Machine Learning, vol. 46, pp. 191-202, 2002.
    • (2002) Machine Learning , vol.46 , pp. 191-202
    • Lin, Y.1    Lee, Y.2    Wahba, G.3
  • 11
    • 0036582564 scopus 로고    scopus 로고
    • Bayesian Framework for Least Squares Support Vector Machine Classifiers, Gaussian Processes and Kernel Fisher Discriminant Analysis
    • P.B. Nair, A. Choudhury, and A.J. Keane, "Bayesian Framework for Least Squares Support Vector Machine Classifiers, Gaussian Processes and Kernel Fisher Discriminant Analysis," Neural Computation, vol. 15, pp. 1115-1148, 2002.
    • (2002) Neural Computation , vol.15 , pp. 1115-1148
    • Nair, P.B.1    Choudhury, A.2    Keane, A.J.3
  • 12
    • 84899008261 scopus 로고    scopus 로고
    • One-Class LP Classifier for Dissimilarity Representations
    • S. Thrun, S. Becker, and K. Obermayer, eds, MIT Press
    • E. Pekalska, D.M. Tax, and R.P.W. Duin, "One-Class LP Classifier for Dissimilarity Representations," Advances in Neural Information Processing Systems 12, S. Thrun, S. Becker, and K. Obermayer, eds., MIT Press, 2003.
    • (2003) Advances in Neural Information Processing Systems 12
    • Pekalska, E.1    Tax, D.M.2    Duin, R.P.W.3
  • 13
    • 0001614845 scopus 로고
    • A Probabilistic Resource Allocation Network for Novelty Detection
    • S. Roberts and L. Tarassenko, "A Probabilistic Resource Allocation Network for Novelty Detection," Neural Computation, vol. 6, pp. 270-284, 1994.
    • (1994) Neural Computation , vol.6 , pp. 270-284
    • Roberts, S.1    Tarassenko, L.2
  • 16
    • 21844462364 scopus 로고    scopus 로고
    • A Classification Framework for Anomaly Detection
    • I. Steinwart, D. Hush, and C. Scovel, "A Classification Framework for Anomaly Detection," J. Machine Learning Research, vol. 6, pp. 211-232, 2005.
    • (2005) J. Machine Learning Research , vol.6 , pp. 211-232
    • Steinwart, I.1    Hush, D.2    Scovel, C.3
  • 18
    • 0942266514 scopus 로고    scopus 로고
    • Support Vector Data Description
    • D.M.J. Tax and R.P.W. Duin, "Support Vector Data Description," Machine Learning, vol. 54, pp. 45-66, 2004.
    • (2004) Machine Learning , vol.54 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 21
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on Error Expectation for Support Vector Machines
    • V. Vapnik and O. Chapelle, "Bounds on Error Expectation for Support Vector Machines," Neural Computation, vol. 12, 2000.
    • (2000) Neural Computation , vol.12
    • Vapnik, V.1    Chapelle, O.2
  • 23
    • 33646554819 scopus 로고    scopus 로고
    • Consistency and Convergence Rates of One-Class SVM and Related Algorithms
    • R. Vert and J.P. Vert, "Consistency and Convergence Rates of One-Class SVM and Related Algorithms," J. Machine Learning Research, vol. 7, pp. 817-854, 2006.
    • (2006) J. Machine Learning Research , vol.7 , pp. 817-854
    • Vert, R.1    Vert, J.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.