-
1
-
-
0142063407
-
Novelty detection: a review, part I: statistical approaches
-
Markou M, Singh S (2003) Novelty detection: a review, part I: statistical approaches. Signal Process 83(12): 2481-2497.
-
(2003)
Signal Process
, vol.83
, Issue.12
, pp. 2481-2497
-
-
Markou, M.1
Singh, S.2
-
2
-
-
0142126712
-
Novelty detection: a review, part II: neural network based approaches
-
Markou M, Singh S (2003) Novelty detection: a review, part II: neural network based approaches. Signal Process 83(12): 2499-2521.
-
(2003)
Signal Process
, vol.83
, Issue.12
, pp. 2499-2521
-
-
Markou, M.1
Singh, S.2
-
3
-
-
33846080495
-
Density-induced support vector data desciption
-
Lee K, Kim D, Lee K, Lee D (2007) Density-induced support vector data desciption. IEEE Trans Neural Netw 18(1): 284-289.
-
(2007)
IEEE Trans Neural Netw
, vol.18
, Issue.1
, pp. 284-289
-
-
Lee, K.1
Kim, D.2
Lee, K.3
Lee, D.4
-
7
-
-
0033220728
-
Support vector domain description
-
Tax D, Duin R (1999) Support vector domain description. Pattern Recogn Lett 20: 1191-1199.
-
(1999)
Pattern Recogn Lett
, vol.20
, pp. 1191-1199
-
-
Tax, D.1
Duin, R.2
-
8
-
-
0942266514
-
Support vector data description
-
Tax D, Duin R (2004) Support vector data description. Mach Learn 54: 45-66.
-
(2004)
Mach Learn
, vol.54
, pp. 45-66
-
-
Tax, D.1
Duin, R.2
-
9
-
-
0001614845
-
A probabilistic resource allocation network for novelty detection
-
Roberts S, Tarassenko L (1994) A probabilistic resource allocation network for novelty detection. Neural Comput Appl 6: 270-284.
-
(1994)
Neural Comput
, vol.6
, pp. 270-284
-
-
Roberts, S.1
Tarassenko, L.2
-
11
-
-
33750522220
-
Kernel PCA for novelty detection
-
Hoffmann H (2007) Kernel PCA for novelty detection. Pattern Recogn Lett 40(3): 863-874.
-
(2007)
Pattern Recognit
, vol.40
, Issue.3
, pp. 863-874
-
-
Hoffmann, H.1
-
12
-
-
84899015927
-
Robust novelty detection with single-class MPM
-
MIT Press, Cambridge, MA
-
Lanckriet G, Ghaoui L, Jordan M (2003) Robust novelty detection with single-class MPM. In: Advances in neural information processing systems, vol 15. MIT Press, Cambridge, MA, pp 92-936.
-
(2003)
Advances in neural information processing systems
, vol.15
, pp. 92-936
-
-
Lanckriet, G.1
Ghaoui, L.2
Jordan, M.3
-
13
-
-
0032594954
-
Input space vs. feature space in kernel-based methods
-
Schölkopf B, Mika S, Burges C, Knirsch P, Müller K, Rätsch G, Smola A (1999) Input space vs. feature space in kernel-based methods. IEEE Trans Neural Netw 10(5): 1000-1017.
-
(1999)
IEEE Trans Neural Netw
, vol.10
, Issue.5
, pp. 1000-1017
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.3
Knirsch, P.4
Müller, K.5
Rätsch, G.6
Smola, A.7
-
15
-
-
33646350762
-
Learning minimum volume sets
-
Scott C, Nowak R (2006) Learning minimum volume sets. J Mach Learn Res 7: 665-704.
-
(2006)
J Mach Learn Res
, vol.7
, pp. 665-704
-
-
Scott, C.1
Nowak, R.2
-
16
-
-
21844462364
-
A classification framework for anomaly detection
-
Steinwart I, Hush D, Scovel C (2005) A classification framework for anomaly detection. J Mach Learn Res 6: 211-232.
-
(2005)
J Mach Learn Res
, vol.6
, pp. 211-232
-
-
Steinwart, I.1
Hush, D.2
Scovel, C.3
-
17
-
-
33646554819
-
Consistency and convergence rates of one-class SVM and related algorithms
-
Vert R, Vert J (2006) Consistency and convergence rates of one-class SVM and related algorithms. J Mach Learn Res 7: 817-854.
-
(2006)
J Mach Learn Res
, vol.7
, pp. 817-854
-
-
Vert, R.1
Vert, J.2
-
18
-
-
56349104733
-
Automatic target defect identification for TFT-LCD array process inspection using kernel FCM-based fuzzy SVDD ensemble
-
Liu Y, Lin S, Hsueh Y, M. L. L (2009) Automatic target defect identification for TFT-LCD array process inspection using kernel FCM-based fuzzy SVDD ensemble. Expert Syst Appl 36(2): 1978-1998.
-
(2009)
Expert Syst Appl
, vol.36
, Issue.2
, pp. 1978-1998
-
-
Liu, Y.1
Lin, S.2
Hsueh, Y.M.L.L.3
-
19
-
-
34447263807
-
Svdd-baded pattern denoising
-
Park J, Kang D, Kim J, Kwok J, Tsang I (2007) Svdd-baded pattern denoising. Neural Comput Appl 19(7): 1919-1938.
-
(2007)
Neural Comput Appl
, vol.19
, Issue.7
, pp. 1919-1938
-
-
Park, J.1
Kang, D.2
Kim, J.3
Kwok, J.4
Tsang, I.5
-
20
-
-
32544438305
-
Machine learning algorithms for T-cell epitopes prediction
-
Nanni L (2006) Machine learning algorithms for T-cell epitopes prediction. Neurocomputing 69(7-9): 866-868.
-
(2006)
Neurocomputing
, vol.69
, Issue.7-9
, pp. 866-868
-
-
Nanni, L.1
-
21
-
-
33746885881
-
A support vector method for anomaly detection in hyperspectral imagery
-
Banerjee A, Burlina P, Diehl C (2006) A support vector method for anomaly detection in hyperspectral imagery. IEEE Trans Geosci Remote Sens 44(8): 2282-2291.
-
(2006)
IEEE Trans Geosci Remote Sens
, vol.44
, Issue.8
, pp. 2282-2291
-
-
Banerjee, A.1
Burlina, P.2
Diehl, C.3
-
23
-
-
3142657128
-
Optimal reduced-set vectors for support vector machines with a quadratic kernel
-
Thies T, Weber F (2004) Optimal reduced-set vectors for support vector machines with a quadratic kernel. Neural Comput Appl 16: 1769-1777.
-
(2004)
Neural Comput Appl
, vol.16
, pp. 1769-1777
-
-
Thies, T.1
Weber, F.2
-
24
-
-
0001260194
-
Exact simplification of support vector solutions
-
Downs T, Gates K, Masters A (2002) Exact simplification of support vector solutions. J Mach Learn Res 2: 293-297.
-
(2002)
J Mach Learn Res
, vol.2
, pp. 293-297
-
-
Downs, T.1
Gates, K.2
Masters, A.3
-
26
-
-
34248636293
-
Fast sparse approximation for least squares support vector machine
-
Jiao L, Bo L, Wang L (2007) Fast sparse approximation for least squares support vector machine. IEEE Trans Neural Netw 18: 685-697.
-
(2007)
IEEE Trans Neural Netw
, vol.18
, pp. 685-697
-
-
Jiao, L.1
Bo, L.2
Wang, L.3
-
27
-
-
0001874815
-
Least squares support vector machine classifiers: a large scale algorithm
-
Suykens J, Lukas L, van Dooren P, De Moor B, Vandewalle J (1999) Least squares support vector machine classifiers: a large scale algorithm. In: Proceedings of European conference of circuit theory design, pp 839-842.
-
(1999)
Proceedings of European conference of circuit theory design
, pp. 839-842
-
-
Suykens, J.1
Lukas, L.2
van Dooren, P.3
de Moor, B.4
Vandewalle, J.5
-
28
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3): 293-300.
-
(1999)
Neural Process Lett
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.1
Vandewalle, J.2
-
29
-
-
38049188022
-
Selecting a reduced set for building sparse support vector regression in the primal
-
Bo L, Wang L, Jiao L (2007) Selecting a reduced set for building sparse support vector regression in the primal. In: Advances in knowledge discovery and data mining, pp 35-46.
-
(2007)
Advances in knowledge discovery and data mining
, pp. 35-46
-
-
Bo, L.1
Wang, L.2
Jiao, L.3
-
30
-
-
54349120854
-
Pruning support vector machines without altering performances
-
Liang X, Chen R, Guo X (2008) Pruning support vector machines without altering performances. IEEE Trans Neural Netw 19(10): 1792-1803.
-
(2008)
IEEE Trans Neural Netw
, vol.19
, Issue.10
, pp. 1792-1803
-
-
Liang, X.1
Chen, R.2
Guo, X.3
-
31
-
-
33750523404
-
Adaptive simplification of solution for support vector machine
-
Li Q, Jiao L, Hao Y (2007) Adaptive simplification of solution for support vector machine. Pattern Recogn Lett 40: 972-980.
-
(2007)
Pattern Recogn Lett
, vol.40
, pp. 972-980
-
-
Li, Q.1
Jiao, L.2
Hao, Y.3
-
32
-
-
68949154453
-
Sparse kernel SVMs via cutting-plane training
-
Joachims T, Yu C (2009) Sparse kernel SVMs via cutting-plane training. Mach Learn 76(2-3): 179-193.
-
(2009)
Mach Learn
, vol.76
, Issue.2-3
, pp. 179-193
-
-
Joachims, T.1
Yu, C.2
-
33
-
-
77955514045
-
Fast support vector data description for novelty detection
-
Liu Y, Liu Y, Chen Y (2010) Fast support vector data description for novelty detection. IEEE Trans Neural Netw 21(8): 1296-1313.
-
(2010)
IEEE Trans Neural Netw
, vol.21
, Issue.8
, pp. 1296-1313
-
-
Liu, Y.1
Liu, Y.2
Chen, Y.3
-
34
-
-
0001500115
-
Functions of positive and negative type and the connection with the theory of integal equations
-
Mercer J (1909) Functions of positive and negative type and the connection with the theory of integal equations. Philos Trans R Soc Lond Ser A 209: 415-446.
-
(1909)
Philos Trans R Soc Lond Ser A
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
35
-
-
84898987558
-
Learning to find pre-images
-
J. Thrun, L. Saul, B. Schölkopf (Eds.), Cambridge, MA: MIT Press
-
Bakir G, Weston J, Schölkopf B (2004) Learning to find pre-images. In: Thrun J, Saul L, Schölkopf B (eds) Advances in neural information processing systems. vol 16, MIT Press, Cambridge, MA, pp 449-456.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 449-456
-
-
Bakir, G.1
Weston, J.2
Schölkopf, B.3
-
36
-
-
84898957872
-
Improving the accuracy and speed of support vector learning machines
-
M. Mozer, M. Jordan, and T. Petsche (Eds.), Cambridge, MA: MIT Press
-
Burges C, Schölkopf B (1997) Improving the accuracy and speed of support vector learning machines. In: Mozer M, Jordan M, Petsche T (eds) Advances in neural information processing systems. vol 9, MIT Press, Cambridge, MA, pp 375-381.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 375-381
-
-
Burges, C.1
Schölkopf, B.2
-
37
-
-
9244258603
-
The pre-image problem in kernel methods
-
Kwok J, Tsang I (2004) The pre-image problem in kernel methods. IEEE Trans Neural Netw 15(6): 1517-1525.
-
(2004)
IEEE Trans Neural Netw
, vol.15
, Issue.6
, pp. 1517-1525
-
-
Kwok, J.1
Tsang, I.2
-
38
-
-
0000156598
-
Kernel pca and de-noising in feature space
-
In: Kearns M, Solla S, Cohn D (eds), Morgan Kaufmann, San Mateo, CA
-
Mika S, Schölkopf B, Smola A, Müller K, Scholz M, Rätsch G (1998) Kernel pca and de-noising in feature space. In: Kearns M, Solla S, Cohn D (eds) Advances in neural information processing systems, vol 11. Morgan Kaufmann, San Mateo, CA.
-
(1998)
Advances in neural information processing systems
, vol.11
-
-
Mika, S.1
Schölkopf, B.2
Smola, A.3
Müller, K.4
Scholz, M.5
Rätsch, G.6
-
42
-
-
84855255271
-
-
New York: Wiley
-
Höppner F, Klawonn F, Kruse R, Runkler T (1999) Fuzzy cluster analysis: methods for classification, data analysis and image recognition. Wiley, New York.
-
(1999)
Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition
-
-
Höppner, F.1
Klawonn, F.2
Kruse, R.3
Runkler, T.4
-
43
-
-
22344440204
-
Fuzzy support vector machines for pattern recognition and data mining
-
Huang H, Liu Y (2002) Fuzzy support vector machines for pattern recognition and data mining. Int J Fuzzy Syst 4: 826-835.
-
(2002)
Int J Fuzzy Syst
, vol.4
, pp. 826-835
-
-
Huang, H.1
Liu, Y.2
|