메뉴 건너뛰기




Volumn 21, Issue 8, 2012, Pages 2023-2032

Efficient support vector data descriptions for novelty detection

Author keywords

Kernel method; Novelty detection; Partitioning entropy based KFCM; Preimage; Support vector data description

Indexed keywords

KERNEL METHODS; NOVELTY DETECTION; PARTITIONING-ENTROPY-BASED KFCM; PREIMAGES; SUPPORT VECTOR DATA DESCRIPTION;

EID: 84867736801     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-011-0625-3     Document Type: Article
Times cited : (30)

References (46)
  • 1
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: a review, part I: statistical approaches
    • Markou M, Singh S (2003) Novelty detection: a review, part I: statistical approaches. Signal Process 83(12): 2481-2497.
    • (2003) Signal Process , vol.83 , Issue.12 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 2
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: a review, part II: neural network based approaches
    • Markou M, Singh S (2003) Novelty detection: a review, part II: neural network based approaches. Signal Process 83(12): 2499-2521.
    • (2003) Signal Process , vol.83 , Issue.12 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 3
    • 33846080495 scopus 로고    scopus 로고
    • Density-induced support vector data desciption
    • Lee K, Kim D, Lee K, Lee D (2007) Density-induced support vector data desciption. IEEE Trans Neural Netw 18(1): 284-289.
    • (2007) IEEE Trans Neural Netw , vol.18 , Issue.1 , pp. 284-289
    • Lee, K.1    Kim, D.2    Lee, K.3    Lee, D.4
  • 7
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • Tax D, Duin R (1999) Support vector domain description. Pattern Recogn Lett 20: 1191-1199.
    • (1999) Pattern Recogn Lett , vol.20 , pp. 1191-1199
    • Tax, D.1    Duin, R.2
  • 8
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax D, Duin R (2004) Support vector data description. Mach Learn 54: 45-66.
    • (2004) Mach Learn , vol.54 , pp. 45-66
    • Tax, D.1    Duin, R.2
  • 9
    • 0001614845 scopus 로고
    • A probabilistic resource allocation network for novelty detection
    • Roberts S, Tarassenko L (1994) A probabilistic resource allocation network for novelty detection. Neural Comput Appl 6: 270-284.
    • (1994) Neural Comput , vol.6 , pp. 270-284
    • Roberts, S.1    Tarassenko, L.2
  • 11
    • 33750522220 scopus 로고    scopus 로고
    • Kernel PCA for novelty detection
    • Hoffmann H (2007) Kernel PCA for novelty detection. Pattern Recogn Lett 40(3): 863-874.
    • (2007) Pattern Recognit , vol.40 , Issue.3 , pp. 863-874
    • Hoffmann, H.1
  • 15
    • 33646350762 scopus 로고    scopus 로고
    • Learning minimum volume sets
    • Scott C, Nowak R (2006) Learning minimum volume sets. J Mach Learn Res 7: 665-704.
    • (2006) J Mach Learn Res , vol.7 , pp. 665-704
    • Scott, C.1    Nowak, R.2
  • 16
    • 21844462364 scopus 로고    scopus 로고
    • A classification framework for anomaly detection
    • Steinwart I, Hush D, Scovel C (2005) A classification framework for anomaly detection. J Mach Learn Res 6: 211-232.
    • (2005) J Mach Learn Res , vol.6 , pp. 211-232
    • Steinwart, I.1    Hush, D.2    Scovel, C.3
  • 17
    • 33646554819 scopus 로고    scopus 로고
    • Consistency and convergence rates of one-class SVM and related algorithms
    • Vert R, Vert J (2006) Consistency and convergence rates of one-class SVM and related algorithms. J Mach Learn Res 7: 817-854.
    • (2006) J Mach Learn Res , vol.7 , pp. 817-854
    • Vert, R.1    Vert, J.2
  • 18
    • 56349104733 scopus 로고    scopus 로고
    • Automatic target defect identification for TFT-LCD array process inspection using kernel FCM-based fuzzy SVDD ensemble
    • Liu Y, Lin S, Hsueh Y, M. L. L (2009) Automatic target defect identification for TFT-LCD array process inspection using kernel FCM-based fuzzy SVDD ensemble. Expert Syst Appl 36(2): 1978-1998.
    • (2009) Expert Syst Appl , vol.36 , Issue.2 , pp. 1978-1998
    • Liu, Y.1    Lin, S.2    Hsueh, Y.M.L.L.3
  • 20
    • 32544438305 scopus 로고    scopus 로고
    • Machine learning algorithms for T-cell epitopes prediction
    • Nanni L (2006) Machine learning algorithms for T-cell epitopes prediction. Neurocomputing 69(7-9): 866-868.
    • (2006) Neurocomputing , vol.69 , Issue.7-9 , pp. 866-868
    • Nanni, L.1
  • 21
    • 33746885881 scopus 로고    scopus 로고
    • A support vector method for anomaly detection in hyperspectral imagery
    • Banerjee A, Burlina P, Diehl C (2006) A support vector method for anomaly detection in hyperspectral imagery. IEEE Trans Geosci Remote Sens 44(8): 2282-2291.
    • (2006) IEEE Trans Geosci Remote Sens , vol.44 , Issue.8 , pp. 2282-2291
    • Banerjee, A.1    Burlina, P.2    Diehl, C.3
  • 23
    • 3142657128 scopus 로고    scopus 로고
    • Optimal reduced-set vectors for support vector machines with a quadratic kernel
    • Thies T, Weber F (2004) Optimal reduced-set vectors for support vector machines with a quadratic kernel. Neural Comput Appl 16: 1769-1777.
    • (2004) Neural Comput Appl , vol.16 , pp. 1769-1777
    • Thies, T.1    Weber, F.2
  • 24
    • 0001260194 scopus 로고    scopus 로고
    • Exact simplification of support vector solutions
    • Downs T, Gates K, Masters A (2002) Exact simplification of support vector solutions. J Mach Learn Res 2: 293-297.
    • (2002) J Mach Learn Res , vol.2 , pp. 293-297
    • Downs, T.1    Gates, K.2    Masters, A.3
  • 26
    • 34248636293 scopus 로고    scopus 로고
    • Fast sparse approximation for least squares support vector machine
    • Jiao L, Bo L, Wang L (2007) Fast sparse approximation for least squares support vector machine. IEEE Trans Neural Netw 18: 685-697.
    • (2007) IEEE Trans Neural Netw , vol.18 , pp. 685-697
    • Jiao, L.1    Bo, L.2    Wang, L.3
  • 28
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3): 293-300.
    • (1999) Neural Process Lett , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.1    Vandewalle, J.2
  • 29
    • 38049188022 scopus 로고    scopus 로고
    • Selecting a reduced set for building sparse support vector regression in the primal
    • Bo L, Wang L, Jiao L (2007) Selecting a reduced set for building sparse support vector regression in the primal. In: Advances in knowledge discovery and data mining, pp 35-46.
    • (2007) Advances in knowledge discovery and data mining , pp. 35-46
    • Bo, L.1    Wang, L.2    Jiao, L.3
  • 30
    • 54349120854 scopus 로고    scopus 로고
    • Pruning support vector machines without altering performances
    • Liang X, Chen R, Guo X (2008) Pruning support vector machines without altering performances. IEEE Trans Neural Netw 19(10): 1792-1803.
    • (2008) IEEE Trans Neural Netw , vol.19 , Issue.10 , pp. 1792-1803
    • Liang, X.1    Chen, R.2    Guo, X.3
  • 31
    • 33750523404 scopus 로고    scopus 로고
    • Adaptive simplification of solution for support vector machine
    • Li Q, Jiao L, Hao Y (2007) Adaptive simplification of solution for support vector machine. Pattern Recogn Lett 40: 972-980.
    • (2007) Pattern Recogn Lett , vol.40 , pp. 972-980
    • Li, Q.1    Jiao, L.2    Hao, Y.3
  • 32
    • 68949154453 scopus 로고    scopus 로고
    • Sparse kernel SVMs via cutting-plane training
    • Joachims T, Yu C (2009) Sparse kernel SVMs via cutting-plane training. Mach Learn 76(2-3): 179-193.
    • (2009) Mach Learn , vol.76 , Issue.2-3 , pp. 179-193
    • Joachims, T.1    Yu, C.2
  • 33
    • 77955514045 scopus 로고    scopus 로고
    • Fast support vector data description for novelty detection
    • Liu Y, Liu Y, Chen Y (2010) Fast support vector data description for novelty detection. IEEE Trans Neural Netw 21(8): 1296-1313.
    • (2010) IEEE Trans Neural Netw , vol.21 , Issue.8 , pp. 1296-1313
    • Liu, Y.1    Liu, Y.2    Chen, Y.3
  • 34
    • 0001500115 scopus 로고
    • Functions of positive and negative type and the connection with the theory of integal equations
    • Mercer J (1909) Functions of positive and negative type and the connection with the theory of integal equations. Philos Trans R Soc Lond Ser A 209: 415-446.
    • (1909) Philos Trans R Soc Lond Ser A , vol.209 , pp. 415-446
    • Mercer, J.1
  • 35
    • 84898987558 scopus 로고    scopus 로고
    • Learning to find pre-images
    • J. Thrun, L. Saul, B. Schölkopf (Eds.), Cambridge, MA: MIT Press
    • Bakir G, Weston J, Schölkopf B (2004) Learning to find pre-images. In: Thrun J, Saul L, Schölkopf B (eds) Advances in neural information processing systems. vol 16, MIT Press, Cambridge, MA, pp 449-456.
    • (2004) Advances in Neural Information Processing Systems , vol.16 , pp. 449-456
    • Bakir, G.1    Weston, J.2    Schölkopf, B.3
  • 36
    • 84898957872 scopus 로고    scopus 로고
    • Improving the accuracy and speed of support vector learning machines
    • M. Mozer, M. Jordan, and T. Petsche (Eds.), Cambridge, MA: MIT Press
    • Burges C, Schölkopf B (1997) Improving the accuracy and speed of support vector learning machines. In: Mozer M, Jordan M, Petsche T (eds) Advances in neural information processing systems. vol 9, MIT Press, Cambridge, MA, pp 375-381.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 375-381
    • Burges, C.1    Schölkopf, B.2
  • 37
    • 9244258603 scopus 로고    scopus 로고
    • The pre-image problem in kernel methods
    • Kwok J, Tsang I (2004) The pre-image problem in kernel methods. IEEE Trans Neural Netw 15(6): 1517-1525.
    • (2004) IEEE Trans Neural Netw , vol.15 , Issue.6 , pp. 1517-1525
    • Kwok, J.1    Tsang, I.2
  • 43
    • 22344440204 scopus 로고    scopus 로고
    • Fuzzy support vector machines for pattern recognition and data mining
    • Huang H, Liu Y (2002) Fuzzy support vector machines for pattern recognition and data mining. Int J Fuzzy Syst 4: 826-835.
    • (2002) Int J Fuzzy Syst , vol.4 , pp. 826-835
    • Huang, H.1    Liu, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.