-
2
-
-
2442417778
-
Nanostructures of zinc oxide
-
Z. L. Wang, "Nanostructures of zinc oxide," Mater. Today 7 26-33, 2004.
-
(2004)
Mater. Today
, vol.7
, pp. 26-33
-
-
Wang, Z.L.1
-
3
-
-
84877244804
-
Wettability control on zno nanowires driven by seed layer properties
-
M. Laurenti, et al., "Wettability control on ZnO nanowires driven by seed layer properties," Eur. J. Inorg. Chem. 2013, pp. 2520-2527, 2013.
-
(2013)
Eur. J. Inorg. Chem.
, vol.2013
, pp. 2520-2527
-
-
Laurenti, M.1
-
4
-
-
20144369634
-
Nanowire dye-sensitized solar cells
-
M. Law, et al., "Nanowire dye-sensitized solar cells," Nat. Mater. 4 455-459, 2005.
-
(2005)
Nat. Mater.
, vol.4
, pp. 455-459
-
-
Law, M.1
-
5
-
-
62649102691
-
ZnO nanowire and nanobelt platform for nanotechnology
-
Z. L. Wang, "ZnO nanowire and nanobelt platform for nanotechnology," Materials Science and Engineering: R: Reports 64 33-71, 2009.
-
(2009)
Materials Science and Engineering: R: Reports
, vol.64
, pp. 33-71
-
-
Wang, Z.L.1
-
6
-
-
84885667555
-
Length-dependent charge generation from vertical arrays of high-Aspect ratio znO nanowires
-
doi: 10.1002/chem.201204429
-
V. F. Rivera, et al., "Length-dependent charge generation from vertical arrays of high-Aspect ratio ZnO nanowires," Chem. Eur. J. doi: 10.1002/chem.201204429, 2013.
-
(2013)
Chem. Eur. J.
-
-
Rivera, V.F.1
-
7
-
-
0037461671
-
Field-effect transistors based on single semiconducting oxide nanobelts
-
M. S. Arnold, et al., "Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts," J. Phys. Chem. B 107 659-663, 2003.
-
(2003)
J. Phys. Chem. B
, vol.107
, pp. 659-663
-
-
Arnold, M.S.1
-
8
-
-
75749112005
-
Growth of znO tetrapods for nanostructurebased gas sensors
-
D. Calestani, et al., "Growth of ZnO tetrapods for nanostructurebased gas sensors," Sens. Actuators, B 144, pp. 472-478, 2010.
-
(2010)
Sens. Actuators, B
, vol.144
, pp. 472-478
-
-
Calestani, D.1
-
9
-
-
33847308653
-
Mechanical properties of znO nanowires
-
A. V. Desai and M. A. Haque, "Mechanical properties of ZnO nanowires.," Sens. Actuators, A 134 169-176, 2007.
-
(2007)
Sens. Actuators, A
, vol.134
, pp. 169-176
-
-
Desai, A.V.1
Haque, M.A.2
-
10
-
-
84871621176
-
Zinc oxide nanostructures:From growth to application
-
J. Gomez and O. Tigli, "Zinc oxide nanostructures: from growth to application," J. Mater. Sci. 48 612-624, 2013.
-
(2013)
J. Mater. Sci.
, vol.48
, pp. 612-624
-
-
Gomez, J.1
Tigli, O.2
-
11
-
-
56549113271
-
Zno nanowire field-effect transistors
-
P.-C. Chang and J. G. Lu, "ZnO Nanowire Field-Effect Transistors," IEEE T. Electron Dev. 55 2977-2987, 2008.
-
(2008)
IEEE T. Electron Dev.
, vol.55
, pp. 2977-2987
-
-
Chang, P.-C.1
Lu, J.G.2
-
12
-
-
17044428578
-
Fabrication and electrical characteristics of high-performance znO nanorod field-effect transistors
-
W. I. Park, et al., "Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors," Appl. Phys. Lett. 85 5052-5054, 2004.
-
(2004)
Appl. Phys. Lett.
, vol.85
, pp. 5052-5054
-
-
Park, W.I.1
-
13
-
-
4143108889
-
Single crystal nanowire vertical surround-gate field-effect transistor
-
H. T. Ng, et al., "Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor," Nano Lett. 4 1247-1252, 2004.
-
(2004)
Nano Lett.
, vol.4
, pp. 1247-1252
-
-
Ng, H.T.1
-
14
-
-
37049137333
-
Site-binding model of the electrical double layer at the oxide/water interface
-
D. E. Yales, et al., "Site-binding model of the electrical double layer at the oxide/water interface," J. Chem. Soc., Faraday Trans. 70, pp. 1807-1818, 1974.
-
(1974)
J. Chem. Soc., Faraday Trans.
, vol.70
, pp. 1807-1818
-
-
Yales, D.E.1
-
15
-
-
0018547858
-
Basic properties of the electrolyte-sio2-si system:Physical and theoretical aspects
-
W. M. Siu and R. S. C. Collold, "Basic properties of the electrolyte-SiO2-Si system: Physical and theoretical aspects " IEEE Trans. Electron Dev. 26, pp. 1805-1815, 1979.
-
(1979)
IEEE Trans. Electron Dev.
, vol.26
, pp. 1805-1815
-
-
Siu, W.M.1
Collold, R.S.C.2
-
16
-
-
17944372650
-
PH measurements with single znO nanorods integrated with a microchannel
-
B. S. Kang, et al., "pH measurements with single ZnO nanorods integrated with a microchannel," Appl. Phys. Lett. 86, p. 112105, 2005.
-
(2005)
Appl. Phys. Lett.
, vol.86
, pp. 112105
-
-
Kang, B.S.1
-
17
-
-
38949164006
-
Studies on mCM-41 mesoporous silica for drug delivery:Effect of particle morphology and amine functionalization
-
M. Manzano, et al., "Studies on MCM-41 mesoporous silica for drug delivery: Effect of particle morphology and amine functionalization," Chem. Eng. J. 137 30-37, 2008.
-
(2008)
Chem. Eng. J.
, vol.137
, pp. 30-37
-
-
Manzano, M.1
-
18
-
-
84855306689
-
Heparin-coated colloidal mesoporous silica nanoparticles efficiently bind to antithrombin as an anticoagulant drug-delivery system
-
C. Argyo, et al., "Heparin-Coated Colloidal Mesoporous Silica Nanoparticles Efficiently Bind to Antithrombin as an Anticoagulant Drug-Delivery System," Chem. Eur. J. 18, pp. 428-432, 2012.
-
(2012)
Chem. Eur. J.
, vol.18
, pp. 428-432
-
-
Argyo, C.1
-
19
-
-
21844444274
-
Catalysis of liquid phase organic reactions using chemicallymodified mesoporous inorganic solids
-
J. H. Clark and D. J. Macquarrie, "Catalysis of liquid phase organic reactions using chemicallymodified mesoporous inorganic solids," Chem. Commun., pp. 853-860, 1998.
-
(1998)
Chem. Commun.
, pp. 853-860
-
-
Clark, J.H.1
Macquarrie, D.J.2
-
20
-
-
0034778897
-
Periodic mesoporous silica-based organic-inorganic nanocomposite materials
-
A. Sayari and S. Hamoudi, "Periodic Mesoporous Silica-Based Organic-Inorganic Nanocomposite Materials," Chem. Mater. 13 3151-3168, 2001.
-
(2001)
Chem. Mater.
, vol.13
, pp. 3151-3168
-
-
Sayari, A.1
Hamoudi, S.2
-
21
-
-
64649086220
-
Imaging 3-Aminopropyltriethoxysilane selfassembled monolayers on nanostructured titania and tin (IV) oxide nanowires using colloidal silver nanoparticles
-
A. R. Morrill, et al., "Imaging 3-Aminopropyltriethoxysilane selfassembled monolayers on nanostructured titania and tin (IV) oxide nanowires using colloidal silver nanoparticles," Chem. Phys. Lett. 473, pp. 116-119, 2009.
-
(2009)
Chem. Phys. Lett.
, vol.473
, pp. 116-119
-
-
Morrill, A.R.1
-
22
-
-
77950519575
-
Facile synthesis of highly uniform znO multipods as the supports of au and ag nanoparticles
-
P. Chen, et al., "Facile synthesis of highly uniform ZnO multipods as the supports of Au and Ag nanoparticles," Mater. Chem. Phys. 122, pp. 41-48, 2010.
-
(2010)
Mater. Chem. Phys.
, vol.122
, pp. 41-48
-
-
Chen, P.1
-
23
-
-
69249198144
-
Electrothermal modelling for eIBJ nanogap fabrication
-
D. Demarchi, et al., "Electrothermal modelling for EIBJ nanogap fabrication," Electrochim. Acta 54, pp. 6003-6009, 2009.
-
(2009)
Electrochim. Acta
, vol.54
, pp. 6003-6009
-
-
Demarchi, D.1
-
24
-
-
84857878948
-
Nanogap structures for molecular nanoelectronics
-
P. Motto, et al., "Nanogap structures for molecular nanoelectronics," Nanoscale Res. Lett. 7, pp. 113-120, 2012.
-
(2012)
Nanoscale Res. Lett.
, vol.7
, pp. 113-120
-
-
Motto, P.1
-
25
-
-
84861614174
-
-
I. Rattalino, et al., Phys. Lett. A, vol 376, pp. 2134-2140, 2012.
-
(2012)
Phys. Lett. A
, vol.376
, pp. 2134-2140
-
-
Rattalino, I.1
-
26
-
-
33846076659
-
High performance znO nanowire field effect transistor using self-Aligned nanogap gate electrodes
-
S. N. Cha, et al., "High performance ZnO nanowire field effect transistor using self-Aligned nanogap gate electrodes," Appl. Phys. Lett., vol 89, pp. 263102/1-263102/3, 2006.
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 2631021-2631023
-
-
Cha, S.N.1
-
27
-
-
77955570694
-
Double-gate nanowire field effect transistor for a biosensor
-
J.-H. Ahn, et al., "Double-gate nanowire field effect transistor for a biosensor," Nano Lett., vol 10, pp. 2934-2938, 2010.
-
(2010)
Nano Lett.
, vol.10
, pp. 2934-2938
-
-
Ahn, J.-H.1
-
28
-
-
26244446788
-
Demonstration, analysis, and device design considerations for independent dg mosfets
-
M. Masahara, et al., "Demonstration, Analysis, and Device Design Considerations for Independent DG MOSFETs," IEEE Trans. Electron Device vol. 52, pp. 2046-2053, 2005.
-
(2005)
IEEE Trans. Electron Device
, vol.52
, pp. 2046-2053
-
-
Masahara, M.1
|