메뉴 건너뛰기




Volumn 54, Issue 1, 2014, Pages 30-36

Prediction of new bioactive molecules using a Bayesian belief network

Author keywords

[No Author keywords available]

Indexed keywords

FORECASTING; LEARNING ALGORITHMS; MACHINE LEARNING; MOLECULES;

EID: 84893365556     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci4004909     Document Type: Article
Times cited : (22)

References (43)
  • 3
    • 0032624725 scopus 로고    scopus 로고
    • New QSAR Methods Applied to Structure-Activity Mapping and Combinatorial Chemistry
    • Burden, F. R.; Winkler, D. A. New QSAR Methods Applied to Structure-Activity Mapping and Combinatorial Chemistry J. Chem. Inf. Comput. Sci. 1999, 39, 236-242
    • (1999) J. Chem. Inf. Comput. Sci. , vol.39 , pp. 236-242
    • Burden, F.R.1    Winkler, D.A.2
  • 4
    • 0028467707 scopus 로고
    • Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships
    • Rogers, D.; Hopfinger, A. J. Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships J. Chem. Inf. Comput. Sci. 1994, 34, 854-866
    • (1994) J. Chem. Inf. Comput. Sci. , vol.34 , pp. 854-866
    • Rogers, D.1    Hopfinger, A.J.2
  • 5
    • 17844411481 scopus 로고    scopus 로고
    • Feature selection in quantitative structure-activity relationships
    • Walters, W.; Goldman, B. Feature selection in quantitative structure-activity relationships Curr. Opin. Drug. Discov. Dev. 2005, 8, 329-333
    • (2005) Curr. Opin. Drug. Discov. Dev. , vol.8 , pp. 329-333
    • Walters, W.1    Goldman, B.2
  • 6
    • 0035438388 scopus 로고    scopus 로고
    • Prediction of Biological Activity for High-Throughput Screening Using Binary Kernel Discrimination
    • Harper, G.; Bradshaw, J.; Gittins, J. C.; Green, D. V. S.; Leach, A. R. Prediction of Biological Activity for High-Throughput Screening Using Binary Kernel Discrimination J. Chem. Inf. Comput. Sci. 2001, 41, 1295-1300
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 1295-1300
    • Harper, G.1    Bradshaw, J.2    Gittins, J.C.3    Green, D.V.S.4    Leach, A.R.5
  • 8
    • 4143122120 scopus 로고    scopus 로고
    • Classification of Kinase Inhibitors Using a Bayesian Model
    • Xia, X.; Maliski, E. G.; Gallant, P.; Rogers, D. Classification of Kinase Inhibitors Using a Bayesian Model J. Med. Chem. 2004, 47, 4463-4470
    • (2004) J. Med. Chem. , vol.47 , pp. 4463-4470
    • Xia, X.1    Maliski, E.G.2    Gallant, P.3    Rogers, D.4
  • 9
    • 4544350863 scopus 로고    scopus 로고
    • Enrichment of Extremely Noisy High-Throughput Screening Data Using a Naïve Bayes Classifier
    • Glick, M.; Klon, A. E.; Acklin, P.; Davies, J. W. Enrichment of Extremely Noisy High-Throughput Screening Data Using a Naïve Bayes Classifier J. Biomol. Screen. 2004, 9
    • (2004) J. Biomol. Screen. , pp. 9
    • Glick, M.1    Klon, A.E.2    Acklin, P.3    Davies, J.W.4
  • 10
    • 1842690601 scopus 로고    scopus 로고
    • Molecular Similarity Searching Using Atom Environments, Information-Based Feature Selection, and a Naïve Bayesian Classifier
    • Bender, A.; Mussa, H. Y.; Glen, R. C.; Reiling, S. Molecular Similarity Searching Using Atom Environments, Information-Based Feature Selection, and a Naïve Bayesian Classifier J. Chem. Inf. Comput. Sci. 2004, 44, 170-178
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 170-178
    • Bender, A.1    Mussa, H.Y.2    Glen, R.C.3    Reiling, S.4
  • 11
    • 33745391215 scopus 로고    scopus 로고
    • Prediction of Biological Targets for Compounds Using Multiple-Category Bayesian Models Trained on Chemogenomics Databases
    • Nidhi; Glick, M.; Davies, J. W.; Jenkins, J. L. Prediction of Biological Targets for Compounds Using Multiple-Category Bayesian Models Trained on Chemogenomics Databases J. Chem. Inf. Model. 2006, 46, 1124-1133
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 1124-1133
    • Nidhi1    Glick, M.2    Davies, J.W.3    Jenkins, J.L.4
  • 12
    • 0033518275 scopus 로고    scopus 로고
    • Designing Libraries with CNS Activity
    • Ajay; Bemis, G. W.; Murcko, M. A. Designing Libraries with CNS Activity J. Med. Chem. 1999, 42, 4942-4951
    • (1999) J. Med. Chem. , vol.42 , pp. 4942-4951
    • Ajay1    Bemis, G.W.2    Murcko, M.A.3
  • 14
    • 0031735526 scopus 로고    scopus 로고
    • Artificial neural networks for computer-based molecular design
    • Schneider, G.; Wrede, P. Artificial neural networks for computer-based molecular design Prog. Biophys. Mol. Biol. 1998, 70, 175-222
    • (1998) Prog. Biophys. Mol. Biol. , vol.70 , pp. 175-222
    • Schneider, G.1    Wrede, P.2
  • 15
    • 0036368719 scopus 로고    scopus 로고
    • Application of Neural Networks to Large Dataset QSAR, Virtual Screening, and Library Design
    • Springer-Verlag, New York, Vol.
    • Winkler, D. A.; Burden, F. R. Application of Neural Networks to Large Dataset QSAR, Virtual Screening, and Library Design. In Combinatorial Library: Methods and Protocols; Springer-Verlag, New York, 2002; Vol. 201, pp 325-367.
    • (2002) Combinatorial Library: Methods and Protocols , vol.201 , pp. 325-367
    • Winkler, D.A.1    Burden, F.R.2
  • 16
    • 68149126397 scopus 로고    scopus 로고
    • Multilevel approach to the prediction of properties of organic compounds in the framework of the QSAR/QSPR methodology
    • Baskin, I.; Zhokhova, N.; Palyulin, V.; Zefirov, A.; Zefirov, N. Multilevel approach to the prediction of properties of organic compounds in the framework of the QSAR/QSPR methodology Dokl. Chem. 2009, 427, 172-175
    • (2009) Dokl. Chem. , vol.427 , pp. 172-175
    • Baskin, I.1    Zhokhova, N.2    Palyulin, V.3    Zefirov, A.4    Zefirov, N.5
  • 17
    • 20744453541 scopus 로고    scopus 로고
    • Biological applications of support vector machines
    • Yang, Z. R. Biological applications of support vector machines Brief. Bioinform. 2004, 5, 328-338
    • (2004) Brief. Bioinform. , vol.5 , pp. 328-338
    • Yang, Z.R.1
  • 18
    • 47349113899 scopus 로고    scopus 로고
    • Predictive Activity Profiling of Drugs by Topological-Fragment-Spectra- Based Support Vector Machines
    • Kawai, K.; Fujishima, S.; Takahashi, Y. Predictive Activity Profiling of Drugs by Topological-Fragment-Spectra-Based Support Vector Machines J. Chem. Inf. Model. 2008, 48, 1152-1160
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 1152-1160
    • Kawai, K.1    Fujishima, S.2    Takahashi, Y.3
  • 19
    • 65249163404 scopus 로고    scopus 로고
    • Searching for Target-Selective Compounds Using Different Combinations of Multiclass Support Vector Machine Ranking Methods, Kernel Functions, and Fingerprint Descriptors
    • Wassermann, A. M.; Geppert, H.; Bajorath, J. r. Searching for Target-Selective Compounds Using Different Combinations of Multiclass Support Vector Machine Ranking Methods, Kernel Functions, and Fingerprint Descriptors J. Chem. Inf. Model. 2009, 49, 582-592
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 582-592
    • Wassermann, A.M.1    Geppert, H.2
  • 20
    • 0036740917 scopus 로고    scopus 로고
    • Why do we need so many chemical similarity search methods?
    • Sheridan, R. P.; Kearsley, S. K. Why do we need so many chemical similarity search methods? Drug Discovery Today 2002, 7, 903-911
    • (2002) Drug Discovery Today , vol.7 , pp. 903-911
    • Sheridan, R.P.1    Kearsley, S.K.2
  • 21
    • 84928196309 scopus 로고    scopus 로고
    • Similarity-based machine learning methods for predicting drug-target interactions: A brief review
    • 10.1093/bib/bbt056
    • Ding, H.; Takigawa, I.; Mamitsuka, H.; Zhu, S. Similarity-based machine learning methods for predicting drug-target interactions: a brief review Brief. Bioinform. 2013, 10.1093/bib/bbt056
    • (2013) Brief. Bioinform.
    • Ding, H.1    Takigawa, I.2    Mamitsuka, H.3    Zhu, S.4
  • 22
    • 33846518797 scopus 로고    scopus 로고
    • In silico target fishing: Predicting biological targets from chemical structure
    • Jenkins, J. L.; Bender, A.; Davies, J. W. In silico target fishing: Predicting biological targets from chemical structure Drug Discovery Today: Technol. 2006, 3, 413-421
    • (2006) Drug Discovery Today: Technol. , vol.3 , pp. 413-421
    • Jenkins, J.L.1    Bender, A.2    Davies, J.W.3
  • 23
    • 60849101543 scopus 로고    scopus 로고
    • Similarity-Based Virtual Screening with a Bayesian Inference Network
    • Abdo, A.; Salim, N. Similarity-Based Virtual Screening with a Bayesian Inference Network ChemMedChem. 2009, 4, 210-218
    • (2009) ChemMedChem. , vol.4 , pp. 210-218
    • Abdo, A.1    Salim, N.2
  • 24
    • 74049116938 scopus 로고    scopus 로고
    • Evaluation of a Bayesian inference network for ligand-based virtual screening
    • available at.
    • Chen, B.; Mueller, C.; Willett, P., Evaluation of a Bayesian inference network for ligand-based virtual screening. J. Cheminf. 2009, 1, 5; available at http://www.jcheminf.com/content/1/1/5.
    • (2009) J. Cheminf. , vol.1 , pp. 5
    • Chen, B.1    Mueller, C.2    Willett, P.3
  • 26
    • 0344686488 scopus 로고    scopus 로고
    • Spline-Fitting with a Genetic Algorithm: A Method for Developing Classification Structure-Activity Relationships
    • Sutherland, J. J.; O'Brien, L. A.; Weaver, D. F. Spline-Fitting with a Genetic Algorithm: A Method for Developing Classification Structure-Activity Relationships J. Chem. Inf. Comput. Sci. 2003, 43, 1906-1915
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1906-1915
    • Sutherland, J.J.1    O'Brien, L.A.2    Weaver, D.F.3
  • 27
    • 4043167653 scopus 로고    scopus 로고
    • Data Mining and Machine Learning Techniques for the Identification of Mutagenicity Inducing Substructures and Structure Activity Relationships of Noncongeneric Compounds
    • Helma, C.; Cramer, T.; Kramer, S.; De Raedt, L. Data Mining and Machine Learning Techniques for the Identification of Mutagenicity Inducing Substructures and Structure Activity Relationships of Noncongeneric Compounds J. Chem. Inf. Comput. Sci. 2004, 44, 1402-1411
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 1402-1411
    • Helma, C.1    Cramer, T.2    Kramer, S.3    De Raedt, L.4
  • 28
    • 0035960062 scopus 로고    scopus 로고
    • Three-Dimensional Quantitative Structure-Activity Relationships of Cyclo-oxygenase-2 (COX-2) Inhibitors: A Comparative Molecular Field Analysis
    • Chavatte, P.; Yous, S.; Marot, C.; Baurin, N.; Lesieur, D. Three-Dimensional Quantitative Structure-Activity Relationships of Cyclo-oxygenase-2 (COX-2) Inhibitors: A Comparative Molecular Field Analysis J. Med. Chem. 2001, 44, 3223-3230
    • (2001) J. Med. Chem. , vol.44 , pp. 3223-3230
    • Chavatte, P.1    Yous, S.2    Marot, C.3    Baurin, N.4    Lesieur, D.5
  • 29
    • 6044244849 scopus 로고    scopus 로고
    • A Comparison of Methods for Modeling Quantitative Structure-Activity Relationships
    • Sutherland, J. J.; O'Brien, L. A.; Weaver, D. F. A Comparison of Methods for Modeling Quantitative Structure-Activity Relationships J. Med. Chem. 2004, 47, 5541-5554
    • (2004) J. Med. Chem. , vol.47 , pp. 5541-5554
    • Sutherland, J.J.1    O'Brien, L.A.2    Weaver, D.F.3
  • 30
    • 16644388220 scopus 로고    scopus 로고
    • Three-dimensional quantitative structure-activity and structure-selectivity relationships of dihydrofolate reductase inhibitors
    • Sutherland, J. J.; Weaver, D. F. Three-dimensional quantitative structure-activity and structure-selectivity relationships of dihydrofolate reductase inhibitors J. Comput.-Aided Mol. Des. 2004, 18, 309-331
    • (2004) J. Comput.-Aided Mol. Des. , vol.18 , pp. 309-331
    • Sutherland, J.J.1    Weaver, D.F.2
  • 33
    • 0003911273 scopus 로고    scopus 로고
    • Symyx Technologies. (accessed June 20).
    • Symyx Technologies. MDL Drug Data Report. http://accelrys.com/products/ databases/bioactivity/mddr.html (accessed June 20, 2013).
    • (2013) MDL Drug Data Report
  • 34
    • 84863083740 scopus 로고    scopus 로고
    • Ligand expansion in ligand-based virtual screening using relevance feedback
    • Abdo, A.; Saeed, F.; Hamza, H.; Ahmed, A.; Salim, N. Ligand expansion in ligand-based virtual screening using relevance feedback J. Comput.-Aided Mol. Des. 2012, 26, 279-287
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 279-287
    • Abdo, A.1    Saeed, F.2    Hamza, H.3    Ahmed, A.4    Salim, N.5
  • 35
    • 79952614063 scopus 로고    scopus 로고
    • New Fragment Weighting Scheme for the Bayesian Inference Network in Ligand-Based Virtual Screening
    • Abdo, A.; Salim, N. New Fragment Weighting Scheme for the Bayesian Inference Network in Ligand-Based Virtual Screening J. Chem. Inf. Model. 2011, 51, 25-32
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 25-32
    • Abdo, A.1    Salim, N.2
  • 36
    • 80053501637 scopus 로고    scopus 로고
    • Implementing Relevance Feedback in Ligand-Based Virtual Screening Using Bayesian Inference Network
    • Abdo, A.; Salim, N.; Ahmed, A. Implementing Relevance Feedback in Ligand-Based Virtual Screening Using Bayesian Inference Network J. Biomol. Screen 2011, 16, 1081-1088
    • (2011) J. Biomol. Screen , vol.16 , pp. 1081-1088
    • Abdo, A.1    Salim, N.2    Ahmed, A.3
  • 37
    • 33646249968 scopus 로고    scopus 로고
    • New Methods for Ligand-Based Virtual Screening: Use of Data Fusion and Machine Learning to Enhance the Effectiveness of Similarity Searching
    • Hert, J.; Willett, P.; Wilton, D. J.; Acklin, P.; Azzaoui, K.; Jacoby, E.; Schuffenhauer, A. New Methods for Ligand-Based Virtual Screening: Use of Data Fusion and Machine Learning to Enhance the Effectiveness of Similarity Searching J. Chem. Inf. Model 2006, 46, 462-470
    • (2006) J. Chem. Inf. Model , vol.46 , pp. 462-470
    • Hert, J.1    Willett, P.2    Wilton, D.J.3    Acklin, P.4    Azzaoui, K.5    Jacoby, E.6    Schuffenhauer, A.7
  • 38
    • 33646855259 scopus 로고    scopus 로고
    • Accelrys Software Inc. San Diego CA.
    • Pipeline Pilot, Accelrys Software Inc.: San Diego CA, 2008.
    • (2008) Pipeline Pilot
  • 42
    • 0032584954 scopus 로고    scopus 로고
    • Normalized Gaussian Radial Basis Function networks
    • Bugmann, G. Normalized Gaussian Radial Basis Function networks Neurocomputing 1998, 20, 97-110
    • (1998) Neurocomputing , vol.20 , pp. 97-110
    • Bugmann, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.