메뉴 건너뛰기




Volumn 8, Issue 3, 2005, Pages 329-333

Feature selection in quantitative structure-activity relationships

Author keywords

Feature selection; QSAR; Variable selection

Indexed keywords

NEW DRUG;

EID: 17844411481     PISSN: 13676733     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Review
Times cited : (30)

References (36)
  • 5
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A: An introduction to variable and feature selection. J Machine Learning Res (2003) 3(March):1157-1182. A review of feature selection techniques from a computer science perspective.
    • (2003) J Machine Learning Res , vol.3 , Issue.MARCH , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 6
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O, Vapnik V, Bousquet O, Mukherjee S: Choosing multiple parameters for support vector machines. Machine Learning (2002) 46(1-3):131-159. Examples of using cost functions other than cross-validation for parameter tuning and feature selection.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 7
    • 13444265939 scopus 로고    scopus 로고
    • Judging the significance of multiple linear regression models
    • Livingstone DJ, Salt DW: Judging the significance of multiple linear regression models. J Med Chem (2005) 48(3):661-663. A study of the impact of feature selection on linear regression models.
    • (2005) J Med Chem , vol.48 , Issue.3 , pp. 661-663
    • Livingstone, D.J.1    Salt, D.W.2
  • 8
    • 1642380461 scopus 로고    scopus 로고
    • The problem of overfitting
    • Hawkins DM: The problem of overfitting. J Chem Inf Comput Sci (2004) 44(1):1-12. An excellent review that details a number of factors which can lead to overfitting.
    • (2004) J Chem Inf Comput Sci , vol.44 , Issue.1 , pp. 1-12
    • Hawkins, D.M.1
  • 10
    • 0345117302 scopus 로고    scopus 로고
    • Using ensembles to classify compounds for drug discovery
    • Lanctot JK, Putta S, Lemmen C, Greene J: Using ensembles to classify compounds for drug discovery. J Chem Inf Comput Sci (2003) 43(6):2163-2169.
    • (2003) J Chem Inf Comput Sci , vol.43 , Issue.6 , pp. 2163-2169
    • Lanctot, J.K.1    Putta, S.2    Lemmen, C.3    Greene, J.4
  • 11
    • 5444225766 scopus 로고    scopus 로고
    • A comparative study on feature selection methods for drug discovery
    • Liu Y: A comparative study on feature selection methods for drug discovery. J Chem Inf Comput Sci (2004) 44(5):1823-1828. A comparison of effects of several feature selection methods on OSAR models.
    • (2004) J Chem Inf Comput Sci , vol.44 , Issue.5 , pp. 1823-1828
    • Liu, Y.1
  • 12
    • 5444266247 scopus 로고    scopus 로고
    • Evaluation of mutual information and genetic programming for feature selection in QSAR
    • Venkatraman V, Dalby AR, Yang ZR: Evaluation of mutual information and genetic programming for feature selection in QSAR. J Chem Inf Comput Sci (2004) 44(5):1686-1692.
    • (2004) J Chem Inf Comput Sci , vol.44 , Issue.5 , pp. 1686-1692
    • Venkatraman, V.1    Dalby, A.R.2    Yang, Z.R.3
  • 13
    • 0242417619 scopus 로고    scopus 로고
    • Feature selection and transduction for prediction of molecular bioactivity for drug design
    • Weston J, Perez-Cruz F, Bousquet O, Chapelle O, Elisseeff A, Scholkopf B: Feature selection and transduction for prediction of molecular bioactivity for drug design. Bioinformatics (2003) 19(6):764-771. Provides an example of the use of prior domain knowledge to obtain feature selection metrics.
    • (2003) Bioinformatics , vol.19 , Issue.6 , pp. 764-771
    • Weston, J.1    Perez-Cruz, F.2    Bousquet, O.3    Chapelle, O.4    Elisseeff, A.5    Scholkopf, B.6
  • 14
    • 2942702317 scopus 로고    scopus 로고
    • SVM-based feature selection for characterization of focused compound collections
    • Byvatov E, Schneider G: SVM-based feature selection for characterization of focused compound collections. J Chem Inf Comput Sci (2004) 44(3):993-999.
    • (2004) J Chem Inf Comput Sci , vol.44 , Issue.3 , pp. 993-999
    • Byvatov, E.1    Schneider, G.2
  • 15
    • 0034351492 scopus 로고    scopus 로고
    • Kolmogorov-Smimov statistic and its application in library design
    • Rassokhin DN, Agrafiotis DK: Kolmogorov-Smimov statistic and its application in library design. J Mol Graph Model (2000) 18(4-5):368-382.
    • (2000) J Mol Graph Model , vol.18 , Issue.4-5 , pp. 368-382
    • Rassokhin, D.N.1    Agrafiotis, D.K.2
  • 16
    • 1842679412 scopus 로고    scopus 로고
    • Implementing the Fisher's discriminant ratio in a k-means clustering algorithm for feature selection and data set trimming
    • Lin TM, Li MT, Tsai KC: Implementing the Fisher's discriminant ratio in a k-means clustering algorithm for feature selection and data set trimming. J Chem Inf Comput Sci (2004) 44(1):76-87.
    • (2004) J Chem Inf Comput Sci , vol.44 , Issue.1 , pp. 76-87
    • Lin, T.M.1    Li, M.T.2    Tsai, K.C.3
  • 17
    • 2942717219 scopus 로고    scopus 로고
    • Feature selection for descriptor based classification models. 2. Human intestinal absorption (HIA)
    • Wegner JK, Frohlich H, Zell A: Feature selection for descriptor based classification models. 2. Human intestinal absorption (HIA). J Chem Inf Comput Sci (2004) 44(3):931-939.
    • (2004) J Chem Inf Comput Sci , vol.44 , Issue.3 , pp. 931-939
    • Wegner, J.K.1    Frohlich, H.2    Zell, A.3
  • 18
    • 2942704287 scopus 로고    scopus 로고
    • Feature selection for descriptor based classification models. 1. Theory and GA-SEC algorithm
    • Wegner JK, Frohlich H, Zell A: Feature selection for descriptor based classification models. 1. Theory and GA-SEC algorithm. J Chem Inf Comput Sci (2004) 44(3):921-930.
    • (2004) J Chem Inf Comput Sci , vol.44 , Issue.3 , pp. 921-930
    • Wegner, J.K.1    Frohlich, H.2    Zell, A.3
  • 19
    • 0037498037 scopus 로고    scopus 로고
    • Prediction of aqueous solubility and partition coefficient optimized by a genetic algorithm based descriptor selection method
    • Wegner JK, Zell A: Prediction of aqueous solubility and partition coefficient optimized by a genetic algorithm based descriptor selection method. J Chem Inf Comput Sci (2003) 43(3):1077-1084.
    • (2003) J Chem Inf Comput Sci , vol.43 , Issue.3 , pp. 1077-1084
    • Wegner, J.K.1    Zell, A.2
  • 20
    • 1842690601 scopus 로고    scopus 로고
    • Molecular similarity searching using atom environments, information-based feature selection, and a naïve Bayesian classifier
    • Bender A, Mussa HY, Glen RC, Reiling S: Molecular similarity searching using atom environments, information-based feature selection, and a naïve Bayesian classifier. J Chem Inf Comput Sci (2004) 44(1):170-178.
    • (2004) J Chem Inf Comput Sci , vol.44 , Issue.1 , pp. 170-178
    • Bender, A.1    Mussa, H.Y.2    Glen, R.C.3    Reiling, S.4
  • 21
    • 17844380958 scopus 로고    scopus 로고
    • University of Wisconsin, Madison, WI, USA
    • KDD Cup (2001): University of Wisconsin, Madison, WI, USA (2001). http://www.cs.wisc.edu/~dpage/kddcup2001/
    • (2001)
  • 22
    • 20844448884 scopus 로고    scopus 로고
    • Validation tools for variable subset regression
    • Baumann K, Stiefl N: Validation tools for variable subset regression. J Comput Aid Mol Des (2005) 18(7-9):549-562. Presents a number of interesting metrics for assessing the quality of a QSAR model.
    • (2005) J Comput Aid Mol des , vol.18 , Issue.7-9 , pp. 549-562
    • Baumann, K.1    Stiefl, N.2
  • 25
    • 0036628557 scopus 로고    scopus 로고
    • Genetic algorithm guided selection: Variable selection and subset selection
    • Cho SJ, Hermsmeier MA: Genetic algorithm guided selection: Variable selection and subset selection. J Chem Inf Comput Sci (2002) 42(4):927-936.
    • (2002) J Chem Inf Comput Sci , vol.42 , Issue.4 , pp. 927-936
    • Cho, S.J.1    Hermsmeier, M.A.2
  • 26
    • 0036557850 scopus 로고    scopus 로고
    • Combined MEDV-GA-MLR method for QSAR of three panels of steroids, dipeptides and COX-2 inhibitors
    • Liu SS, Yin CS, Wang LS: Combined MEDV-GA-MLR method for QSAR of three panels of steroids, dipeptides and COX-2 inhibitors. J Chem Inf Comput Sci (2002) 42(3):749-756.
    • (2002) J Chem Inf Comput Sci , vol.42 , Issue.3 , pp. 749-756
    • Liu, S.S.1    Yin, C.S.2    Wang, L.S.3
  • 27
    • 0344121835 scopus 로고    scopus 로고
    • Comparison of MLR, PLS and GA-MLR in QSAR analysis
    • Saxena AK, Prathipati P: Comparison of MLR, PLS and GA-MLR in QSAR analysis. SAR QSAR Environ Res (2003) 14(5-6):433-445.
    • (2003) SAR QSAR Environ Res , vol.14 , Issue.5-6 , pp. 433-445
    • Saxena, A.K.1    Prathipati, P.2
  • 28
    • 0036136840 scopus 로고    scopus 로고
    • Enhancement of binary QSAR analysis by a GA-based variable selection method
    • Gao H, Lajiness MS, Van Drie J: Enhancement of binary QSAR analysis by a GA-based variable selection method. J Mol Graph Model (2002) 20(4):259-268.
    • (2002) J Mol Graph Model , vol.20 , Issue.4 , pp. 259-268
    • Gao, H.1    Lajiness, M.S.2    Van Drie, J.3
  • 29
    • 0035438386 scopus 로고    scopus 로고
    • Toward an optimal procedure for variable selection and QSAR model building
    • Yasri A, Hartsough D: Toward an optimal procedure for variable selection and QSAR model building. J Chem Inf Comput Sci (2001) 41(5):1218-1227.
    • (2001) J Chem Inf Comput Sci , vol.41 , Issue.5 , pp. 1218-1227
    • Yasri, A.1    Hartsough, D.2
  • 31
    • 0000378338 scopus 로고    scopus 로고
    • Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle
    • Zheng W, Tropsha A: Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle. J Chem Inf Comput Sci (2000) 40(1):185-194.
    • (2000) J Chem Inf Comput Sci , vol.40 , Issue.1 , pp. 185-194
    • Zheng, W.1    Tropsha, A.2
  • 32
    • 0037186503 scopus 로고    scopus 로고
    • Feature selection for structure-activity correlation using binary particle swarms
    • Agrafiotis DK, Cedeno W: Feature selection for structure-activity correlation using binary particle swarms. J Med Chem (2002) 45(5):1098-1107.
    • (2002) J Med Chem , vol.45 , Issue.5 , pp. 1098-1107
    • Agrafiotis, D.K.1    Cedeno, W.2
  • 33
    • 0042856574 scopus 로고    scopus 로고
    • Using particle swarms for the development of QSAR models based on k-nearest neighbor and kernel regression
    • Cedeno W, Agrafiotis DK: Using particle swarms for the development of QSAR models based on k-nearest neighbor and kernel regression. J Comput Aid Mol Des (2003) 17(2-4):255-263.
    • (2003) J Comput Aid Mol des , vol.17 , Issue.2-4 , pp. 255-263
    • Cedeno, W.1    Agrafiotis, D.K.2
  • 34
    • 0036581948 scopus 로고    scopus 로고
    • Variable selection for QSAR by artificial ant colony systems
    • Izrailev S, Agrafiotis DK: Variable selection for QSAR by artificial ant colony systems. SAR QSAR Environ Res (2002) 13(3-4):417-423.
    • (2002) SAR QSAR Environ Res , vol.13 , Issue.3-4 , pp. 417-423
    • Izrailev, S.1    Agrafiotis, D.K.2
  • 35
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, Vapnik V: Gene selection for cancer classification using support vector machines. Machine Learning (2002) 46(1-3):389-422.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 36
    • 5444272497 scopus 로고    scopus 로고
    • Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents
    • Xue Y, Li ZR, Yap CW, Sun LZ, Chen X, Chen YZ: Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents. J Chem Inf Comput Sci (2004) 44(5):1630-1638.
    • (2004) J Chem Inf Comput Sci , vol.44 , Issue.5 , pp. 1630-1638
    • Xue, Y.1    Li, Z.R.2    Yap, C.W.3    Sun, L.Z.4    Chen, X.5    Chen, Y.Z.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.