-
1
-
-
84864393542
-
Adaptation to stress in yeast: To translate or not? Biochem
-
Simpson CE, Ashe MP. 2012. Adaptation to stress in yeast: to translate or not? Biochem. Soc. Trans. 40:794-799. http://dx.doi.org/10.1042 /BST20120078.
-
(2012)
Soc. Trans
, vol.40
, pp. 794-799
-
-
Simpson, C.E.1
Ashe, M.P.2
-
2
-
-
83455177213
-
Target of rapamycin (TOR) in nutrient signaling and growth control
-
Loewith R, Hall MN. 2011. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189:1177-1201. http://dx.doi.org /10.1534/genetics.111.133363.
-
(2011)
Genetics
, vol.189
, pp. 1177-1201
-
-
Loewith, R.1
Hall, M.N.2
-
3
-
-
73249152807
-
Life in the midst of scarcity: Adaptations to nutrient availability in Saccharomyces cerevisiae
-
Smets B, Ghillebert R, De Snijder P, Binda M, Swinnen E, De Virgilio C, Winderickx J. 2010. Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr. Genet. 56:1-32. http: //dx.doi.org/10.1007/s00294-009-0287-1.
-
(2010)
Curr. Genet
, vol.56
, pp. 1-32
-
-
Smets, B.1
Ghillebert, R.2
De Snijder, P.3
Binda, M.4
Swinnen, E.5
De Virgilio, C.6
Winderickx, J.7
-
4
-
-
0035336970
-
Glucose-sensing mechanisms in eukaryotic cells
-
Rolland F, Winderickx J, Thevelein JM. 2001. Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem. Sci. 26:310-317. http://dx.doi.org/10.1016/S0968-0004(01)01805-9.
-
(2001)
Trends Biochem. Sci
, vol.26
, pp. 310-317
-
-
Rolland, F.1
Winderickx, J.2
Thevelein, J.M.3
-
5
-
-
6344256284
-
Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae
-
Colombo S, Ronchetti D, Thevelein JM, Winderickx J, Martegani E. 2004. Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae. J. Biol. Chem. 279:46715-46722. http://dx.doi.org/10.1074/jbc.M405136200.
-
(2004)
J. Biol. Chem
, vol.279
, pp. 46715-46722
-
-
Colombo, S.1
Ronchetti, D.2
Thevelein, J.M.3
Winderickx, J.4
Martegani, E.5
-
6
-
-
0032986914
-
A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose
-
Kraakman L, Lemaire K, Ma P, Teunissen AW, Donaton MC, Van Dijck P, Winderickx J, De Winde JH, Thevelein JM. 1999. A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol. Microbiol. 32:1002-1012. http://dx.doi.org/10.1046/j.1365-2958.1999.01413.x.
-
(1999)
Mol. Microbiol
, vol.32
, pp. 1002-1012
-
-
Kraakman, L.1
Lemaire, K.2
Ma, P.3
Teunissen, A.W.4
Donaton, M.C.5
Van Dijck, P.6
Winderickx, J.7
De Winde, J.H.8
Thevelein, J.M.9
-
7
-
-
0033745888
-
Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process
-
Rolland F, De Winde JH, Lemaire K, Boles E, Thevelein JM, Winderickx J. 2000. Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol. Microbiol. 38: 348-358. http://dx.doi.org/10.1046/j.1365-2958.2000.02125.x.
-
(2000)
Mol. Microbiol
, vol.38
, pp. 348-358
-
-
Rolland, F.1
De Winde, J.H.2
Lemaire, K.3
Boles, E.4
Thevelein, J.M.5
Winderickx, J.6
-
8
-
-
0021967321
-
In yeast, RAS proteins are controlling elements of adenylate cyclase
-
Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M. 1985. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:27-36. http://dx.doi.org /10.1016/0092-8674(85)90305-8.
-
(1985)
Cell
, vol.40
, pp. 27-36
-
-
Toda, T.1
Uno, I.2
Ishikawa, T.3
Powers, S.4
Kataoka, T.5
Broek, D.6
Cameron, S.7
Broach, J.8
Matsumoto, K.9
Wigler, M.10
-
9
-
-
0023664521
-
Expression in Escherichia coli of BCY1, the regulatory subunit of cyclic AMPdependent protein kinase from Saccharomyces cerevisiae. Purification and characterization
-
Johnson KE, Cameron S, Toda T, Wigler M, Zoller MJ. 1987. Expression in Escherichia coli of BCY1, the regulatory subunit of cyclic AMPdependent protein kinase from Saccharomyces cerevisiae. Purification and characterization. J. Biol. Chem. 262:8636-8642.
-
(1987)
J. Biol. Chem
, vol.262
, pp. 8636-8642
-
-
Johnson, K.E.1
Cameron, S.2
Toda, T.3
Wigler, M.4
Zoller, M.J.5
-
10
-
-
0023947759
-
Mutagenesis of the regulatory subunit of yeast cAMP-dependent protein kinase. Isolation of site-directed mutants with altered binding affinity for catalytic subunit
-
Kuret J, Johnson KE, Nicolette C, Zoller MJ. 1988. Mutagenesis of the regulatory subunit of yeast cAMP-dependent protein kinase. Isolation of site-directed mutants with altered binding affinity for catalytic subunit. J. Biol. Chem. 263:9149-9154.
-
(1988)
J. Biol. Chem
, vol.263
, pp. 9149-9154
-
-
Kuret, J.1
Johnson, K.E.2
Nicolette, C.3
Zoller, M.J.4
-
11
-
-
0023658335
-
Three different genes in S. cerevisiae encode the catalytic subunits of the cAMPdependent protein kinase
-
Toda T, Cameron S, Sass P, Zoller M, Wigler M. 1987. Three different genes in S. cerevisiae encode the catalytic subunits of the cAMPdependent protein kinase. Cell 50:277-287. http://dx.doi.org/10.1016 /0092-8674(87)90223-6.
-
(1987)
Cell
, vol.50
, pp. 277-287
-
-
Toda, T.1
Cameron, S.2
Sass, P.3
Zoller, M.4
Wigler, M.5
-
12
-
-
0023130013
-
Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae
-
Toda T, Cameron S, Sass P, Zoller M, Scott JD, McMullen B, Hurwitz M, Krebs EG, Wigler M. 1987. Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:1371-1377.
-
(1987)
Mol. Cell. Biol
, vol.7
, pp. 1371-1377
-
-
Toda, T.1
Cameron, S.2
Sass, P.3
Zoller, M.4
Scott, J.D.5
McMullen, B.6
Hurwitz, M.7
Krebs, E.G.8
Wigler, M.9
-
13
-
-
0348047591
-
TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0
-
Pedruzzi I, Dubouloz F, Cameroni E, Wanke V, Roosen J, Winderickx J, De Virgilio C. 2003. TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Mol. Cell 12:1607-1613. http://dx.doi.org/10.1016/S1097-2765(03)00485-4.
-
(2003)
Mol. Cell
, vol.12
, pp. 1607-1613
-
-
Pedruzzi, I.1
Dubouloz, F.2
Cameroni, E.3
Wanke, V.4
Roosen, J.5
Winderickx, J.6
De Virgilio, C.7
-
14
-
-
0022859343
-
Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae
-
Sass P, Field J, Nikawa J, Toda T, Wigler M. 1986. Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 83:9303-9307. http://dx.doi.org/10.1073/pnas.83.24.9303.
-
(1986)
Proc. Natl. Acad. Sci. U. S. A
, vol.83
, pp. 9303-9307
-
-
Sass, P.1
Field, J.2
Nikawa, J.3
Toda, T.4
Wigler, M.5
-
15
-
-
0023427567
-
Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae
-
Nikawa J, Sass P, Wigler M. 1987. Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 7:3629-3636.
-
(1987)
Mol. Cell. Biol
, vol.7
, pp. 3629-3636
-
-
Nikawa, J.1
Sass, P.2
Wigler, M.3
-
16
-
-
0035173012
-
Nucleocytoplasmic distribution of budding yeast protein kinase A regulatory subunit Bcy1 requires Zds1 and is regulated by Yak1-dependent phosphorylation of its targeting domain
-
Griffioen G, Branduardi P, Ballarini A, Anghileri P, Norbeck J, Baroni MD, Ruis H. 2001. Nucleocytoplasmic distribution of budding yeast protein kinase A regulatory subunit Bcy1 requires Zds1 and is regulated by Yak1-dependent phosphorylation of its targeting domain. Mol. Cell. Biol. 21:511-523. http://dx.doi.org/10.1128/MCB.21.2.511-523.2001.
-
(2001)
Mol. Cell. Biol
, vol.21
, pp. 511-523
-
-
Griffioen, G.1
Branduardi, P.2
Ballarini, A.3
Anghileri, P.4
Norbeck, J.5
Baroni, M.D.6
Ruis, H.7
-
17
-
-
0035965277
-
Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit
-
McCartney RR, Schmidt MC. 2001. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J. Biol. Chem. 276:36460-36466. http://dx.doi.org/10.1074/jbc.M104418200.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 36460-36466
-
-
McCartney, R.R.1
Schmidt, M.C.2
-
18
-
-
38049174646
-
Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase
-
Rubenstein EM, McCartney RR, Zhang C, Shokat KM, Shirra MK, Arndt KM, Schmidt MC. 2008. Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J. Biol. Chem. 283:222-230. http://dx.doi.org /10.1074/jbc.M707957200.
-
(2008)
J. Biol. Chem
, vol.283
, pp. 222-230
-
-
Rubenstein, E.M.1
McCartney, R.R.2
Zhang, C.3
Shokat, K.M.4
Shirra, M.K.5
Arndt, K.M.6
Schmidt, M.C.7
-
19
-
-
50349099673
-
Roles of the glycogen-binding domain and Snf4 in glucose inhibition of SNF1 protein kinase
-
Momcilovic M, Iram SH, Liu Y, Carlson M. 2008. Roles of the glycogen-binding domain and Snf4 in glucose inhibition of SNF1 protein kinase. J. Biol. Chem. 283:19521-19529. http://dx.doi.org/10.1074/jbc.M803624200.
-
(2008)
J. Biol. Chem
, vol.283
, pp. 19521-19529
-
-
Momcilovic, M.1
Iram, S.H.2
Liu, Y.3
Carlson, M.4
-
20
-
-
0030953974
-
The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex
-
Jiang R, Carlson M. 1997. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol. Cell. Biol. 17:2099-2106.
-
(1997)
Mol. Cell. Biol
, vol.17
, pp. 2099-2106
-
-
Jiang, R.1
Carlson, M.2
-
21
-
-
0035338114
-
Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism
-
Vincent O, Townley R, Kuchin S, Carlson M. 2001. Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Genes Dev. 15:1104-1114. http://dx.doi.org/10.1101/gad.879301.
-
(2001)
Genes Dev
, vol.15
, pp. 1104-1114
-
-
Vincent, O.1
Townley, R.2
Kuchin, S.3
Carlson, M.4
-
22
-
-
84866076360
-
Nutritional control of growth and development in yeast
-
Broach JR. 2012. Nutritional control of growth and development in yeast. Genetics 192:73-105. http://dx.doi.org/10.1534/genetics.111.135731.
-
(2012)
Genetics
, vol.192
, pp. 73-105
-
-
Broach, J.R.1
-
23
-
-
0033974002
-
Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase
-
Sanz P, Alms GR, Haystead TA, Carlson M. 2000. Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol. Cell. Biol. 20:1321-1328. http://dx.doi.org/10.1128/MCB.20.4.1321-1328.2000.
-
(2000)
Mol. Cell. Biol
, vol.20
, pp. 1321-1328
-
-
Sanz, P.1
Alms, G.R.2
Haystead, T.A.3
Carlson, M.4
-
24
-
-
79953314266
-
Nutrient stress does not cause retrograde transport of cytoplasmic tRNA to the nucleus in evolutionarily diverse organisms
-
Chafe SC, Pierce JB, Eswara MB, McGuire AT, Mangroo D. 2011. Nutrient stress does not cause retrograde transport of cytoplasmic tRNA to the nucleus in evolutionarily diverse organisms. Mol. Biol. Cell 22: 1091-1103. http://dx.doi.org/10.1091/mbc.E09-07-0594.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 1091-1103
-
-
Chafe, S.C.1
Pierce, J.B.2
Eswara, M.B.3
McGuire, A.T.4
Mangroo, D.5
-
25
-
-
77957675933
-
The ins and outs of nuclear re-export of retrogradely transported tRNAs in Saccharomyces cerevisiae
-
Pierce JB, Eswara MB, Mangroo D. 2010. The ins and outs of nuclear re-export of retrogradely transported tRNAs in Saccharomyces cerevisiae. Nucleus 1:224-230. http://dx.doi.org/10.4161/nucl.1.3.11250.
-
(2010)
Nucleus
, vol.1
, pp. 224-230
-
-
Pierce, J.B.1
Eswara, M.B.2
Mangroo, D.3
-
26
-
-
73949110601
-
Utp9p facilitates Msn5p-mediated nuclear reexport of retrograded tRNAs in Saccharomyces cerevisiae
-
Eswara MB, McGuire AT, Pierce JB, Mangroo D. 2009. Utp9p facilitates Msn5p-mediated nuclear reexport of retrograded tRNAs in Saccharomyces cerevisiae. Mol. Biol. Cell 20:5007-5025. http://dx.doi.org/10.1091 /mbc.E09-06-0490.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 5007-5025
-
-
Eswara, M.B.1
McGuire, A.T.2
Pierce, J.B.3
Mangroo, D.4
-
27
-
-
34250711447
-
Inorganic phosphate deprivation causes tRNA nuclear accumulation via retrograde transport in Saccharomyces cerevisiae
-
Hurto RL, Tong AH, Boone C, Hopper AK. 2007. Inorganic phosphate deprivation causes tRNA nuclear accumulation via retrograde transport in Saccharomyces cerevisiae. Genetics 176:841-852. http://dx.doi.org/10.1534/genetics.106.069732.
-
(2007)
Genetics
, vol.176
, pp. 841-852
-
-
Hurto, R.L.1
Tong, A.H.2
Boone, C.3
Hopper, A.K.4
-
28
-
-
76649140836
-
Regulation of tRNA bidirectional nuclear-cytoplasmic trafficking in Saccharomyces cerevisiae
-
Murthi A, Shaheen HH, Huang HY, Preston MA, Lai TP, Phizicky EM, Hopper AK. 2010. Regulation of tRNA bidirectional nuclear-cytoplasmic trafficking in Saccharomyces cerevisiae. Mol. Biol. Cell 21:639-649. http: //dx.doi.org/10.1091/mbc.E09-07-0551.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 639-649
-
-
Murthi, A.1
Shaheen, H.H.2
Huang, H.Y.3
Preston, M.A.4
Lai, T.P.5
Phizicky, E.M.6
Hopper, A.K.7
-
29
-
-
23844508130
-
Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae
-
Shaheen HH, Hopper AK. 2005. Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 102:11290-11295. http://dx.doi.org/10.1073/pnas.0503836102.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A
, vol.102
, pp. 11290-11295
-
-
Shaheen, H.H.1
Hopper, A.K.2
-
30
-
-
34250789855
-
Rapid and reversible nuclear accumulation of cytoplasmic tRNA in response to nutrient availability
-
Whitney ML, Hurto RL, Shaheen HH, Hopper AK. 2007. Rapid and reversible nuclear accumulation of cytoplasmic tRNA in response to nutrient availability. Mol. Biol. Cell 18:2678-2686. http://dx.doi.org/10.1091/mbc.E07-01-0006.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 2678-2686
-
-
Whitney, M.L.1
Hurto, R.L.2
Shaheen, H.H.3
Hopper, A.K.4
-
31
-
-
0033431040
-
Nuclear tRNA aminoacylation and its role in nuclear export of endogenous tRNAs in Saccharomyces cerevisiae
-
Sarkar S, Azad AK, Hopper AK. 1999. Nuclear tRNA aminoacylation and its role in nuclear export of endogenous tRNAs in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 96:14366-14371. http://dx.doi.org/10.1073/pnas.96.25.14366.
-
(1999)
Proc. Natl. Acad. Sci. U. S. A
, vol.96
, pp. 14366-14371
-
-
Sarkar, S.1
Azad, A.K.2
Hopper, A.K.3
-
32
-
-
1642464577
-
The nuclear tRNA aminoacylation-dependent pathway may be the principal route used to export tRNA from the nucleus in Saccharomyces cerevisiae
-
Steiner-Mosonyi M, Mangroo D. 2004. The nuclear tRNA aminoacylation-dependent pathway may be the principal route used to export tRNA from the nucleus in Saccharomyces cerevisiae. Biochem. J. 378:809-816. http://dx.doi.org/10.1042/BJ20031306.
-
(2004)
Biochem. J
, vol.378
, pp. 809-816
-
-
Steiner-Mosonyi, M.1
Mangroo, D.2
-
33
-
-
34948909593
-
Utp8p is a nucleolar tRNA-binding protein that forms a complex with components of the nuclear tRNA export machinery in Saccharomyces cerevisiae
-
Strub BR, Eswara MB, Pierce JB, Mangroo D. 2007. Utp8p is a nucleolar tRNA-binding protein that forms a complex with components of the nuclear tRNA export machinery in Saccharomyces cerevisiae. Mol. Biol. Cell 18:3845-3859. http://dx.doi.org/10.1091/mbc.E06-11-1016.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 3845-3859
-
-
Strub, B.R.1
Eswara, M.B.2
Pierce, J.B.3
Mangroo, D.4
-
34
-
-
0034175551
-
An aminoacylation-dependent nuclear tRNA export pathway in yeast
-
Grosshans H, Hurt E, Simos G. 2000. An aminoacylation-dependent nuclear tRNA export pathway in yeast. Genes Dev. 14:830-840. http://dx.doi.org/10.1101/gad.14.7.830.
-
(2000)
Genes Dev
, vol.14
, pp. 830-840
-
-
Grosshans, H.1
Hurt, E.2
Simos, G.3
-
35
-
-
84870477196
-
Utp22p acts in concert with Utp8p to channel aminoacyl-tRNA from the nucleus to the nuclear tRNA export receptor Los1p but not Msn5p
-
Eswara MB, Clayton A, Mangroo D. 2012. Utp22p acts in concert with Utp8p to channel aminoacyl-tRNA from the nucleus to the nuclear tRNA export receptor Los1p but not Msn5p. Biochem. Cell Biol. 90:731-748. http://dx.doi.org/10.1139/o2012-034.
-
(2012)
Biochem. Cell Biol
, vol.90
, pp. 731-748
-
-
Eswara, M.B.1
Clayton, A.2
Mangroo, D.3
-
36
-
-
0031990346
-
Identification of a tRNA-specific nuclear export receptor
-
Kutay U, Lipowsky G, Izaurralde E, Bischoff FR, Schwarzmaier P, Hartmann E, Gorlich D. 1998. Identification of a tRNA-specific nuclear export receptor. Mol. Cell 1:359-369. http://dx.doi.org/10.1016/S1097-2765(00)80036-2.
-
(1998)
Mol. Cell
, vol.1
, pp. 359-369
-
-
Kutay, U.1
Lipowsky, G.2
Izaurralde, E.3
Bischoff, F.R.4
Schwarzmaier, P.5
Hartmann, E.6
Gorlich, D.7
-
37
-
-
0032510462
-
Identification of a nuclear export receptor for tRNA
-
Arts GJ, Fornerod M, Mattaj IW. 1998. Identification of a nuclear export receptor for tRNA. Curr. Biol. 8:305-314. http://dx.doi.org/10.1016 /S0960-9822(98)70130-7.
-
(1998)
Curr. Biol
, vol.8
, pp. 305-314
-
-
Arts, G.J.1
Fornerod, M.2
Mattaj, I.W.3
-
38
-
-
0037112842
-
Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA
-
Calado A, Treichel N, Muller EC, Otto A, Kutay U. 2002. Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. EMBO J. 21:6216-6224. http://dx.doi.org/10.1093/emboj/cdf620.
-
(2002)
EMBO J
, vol.21
, pp. 6216-6224
-
-
Calado, A.1
Treichel, N.2
Muller, E.C.3
Otto, A.4
Kutay, U.5
-
39
-
-
0037112790
-
Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm
-
Bohnsack MT, Regener K, Schwappach B, Saffrich R, Paraskeva E, Hartmann E, Gorlich D. 2002. Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. EMBO J. 21:6205-6215. http://dx.doi.org/10.1093/emboj /cdf613.
-
(2002)
EMBO J
, vol.21
, pp. 6205-6215
-
-
Bohnsack, M.T.1
Regener, K.2
Schwappach, B.3
Saffrich, R.4
Paraskeva, E.5
Hartmann, E.6
Gorlich, D.7
-
40
-
-
21744453148
-
TRNA actively shuttles between the nucleus and cytosol in yeast
-
Takano A, Endo T, Yoshihisa T. 2005. tRNA actively shuttles between the nucleus and cytosol in yeast. Science 309:140-142. http://dx.doi.org/10.1126/science.1113346.
-
(2005)
Science
, vol.309
, pp. 140-142
-
-
Takano, A.1
Endo, T.2
Yoshihisa, T.3
-
41
-
-
84855981708
-
Cex1p facilitates Rna1p-mediated dissociation of the Los1p-tRNA-Gsp1p-GTP export complex
-
McGuire AT, Mangroo D. 2012. Cex1p facilitates Rna1p-mediated dissociation of the Los1p-tRNA-Gsp1p-GTP export complex. Traffic 13: 234-256. http://dx.doi.org/10.1111/j.1600-0854.2011.01304.x.
-
(2012)
Traffic
, vol.13
, pp. 234-256
-
-
McGuire, A.T.1
Mangroo, D.2
-
42
-
-
33846492605
-
Cex1p is a novel cytoplasmic component of the Saccharomyces cerevisiae nuclear tRNA export machinery
-
McGuire AT, Mangroo D. 2007. Cex1p is a novel cytoplasmic component of the Saccharomyces cerevisiae nuclear tRNA export machinery. EMBO J. 26:288-300. http://dx.doi.org/10.1038/sj.emboj.7601493.
-
(2007)
EMBO J
, vol.26
, pp. 288-300
-
-
McGuire, A.T.1
Mangroo, D.2
-
43
-
-
0031771756
-
Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA
-
Hellmuth K, Lau DM, Bischoff FR, Kunzler M, Hurt E, Simos G. 1998. Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA. Mol. Cell. Biol. 18:6374-6386.
-
(1998)
Mol. Cell. Biol
, vol.18
, pp. 6374-6386
-
-
Hellmuth, K.1
Lau, D.M.2
Bischoff, F.R.3
Kunzler, M.4
Hurt, E.5
Simos, G.6
-
44
-
-
79953033536
-
Arabidopsis At2g40730 encodes a cytoplasmic protein involved in nuclear tRNA export
-
Johnstone AD, Mullen RT, Mangroo D. 2011. Arabidopsis At2g40730 encodes a cytoplasmic protein involved in nuclear tRNA export. Botany 89:175-190. http://dx.doi.org/10.1139/B10-090.
-
(2011)
Botany
, vol.89
, pp. 175-190
-
-
Johnstone, A.D.1
Mullen, R.T.2
Mangroo, D.3
-
45
-
-
77954638428
-
Scyl1 facilitates nuclear tRNA export in mammalian cells by acting at the nuclear pore complex
-
Chafe SC, Mangroo D. 2010. Scyl1 facilitates nuclear tRNA export in mammalian cells by acting at the nuclear pore complex. Mol. Biol. Cell 21:2483-2499. http://dx.doi.org/10.1091/mbc.E10-03-0176.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 2483-2499
-
-
Chafe, S.C.1
Mangroo, D.2
-
46
-
-
84857241174
-
Schizosaccharomyces pombe, unlike Saccharomyces cerevisiae, may not directly regulate nuclear-cytoplasmic transport of spliced tRNAs in response to nutrient availability
-
Pierce JB, Mangroo D. 2011. Schizosaccharomyces pombe, unlike Saccharomyces cerevisiae, may not directly regulate nuclear-cytoplasmic transport of spliced tRNAs in response to nutrient availability. Biochem. Cell Biol. 89:554-561. http://dx.doi.org/10.1139/o11-061.
-
(2011)
Biochem. Cell Biol
, vol.89
, pp. 554-561
-
-
Pierce, J.B.1
Mangroo, D.2
-
47
-
-
34250165409
-
The localization of nuclear exporters of the importin-beta family is regulated by Snf1 kinase, nutrient supply and stress
-
Quan X, Yu J, Bussey H, Stochaj U. 2007. The localization of nuclear exporters of the importin-beta family is regulated by Snf1 kinase, nutrient supply and stress. Biochim. Biophys. Acta 1773:1052-1061. http://dx.doi.org/10.1016/j.bbamcr.2007.04.014.
-
(2007)
Biochim. Biophys. Acta
, vol.1773
, pp. 1052-1061
-
-
Quan, X.1
Yu, J.2
Bussey, H.3
Stochaj, U.4
-
48
-
-
0041856095
-
Utp8p is an essential intranuclear component of the nuclear tRNA export machinery of Saccharomyces cerevisiae
-
Steiner-Mosonyi M, Leslie DM, Dehghani H, Aitchison JD, Mangroo D. 2003. Utp8p is an essential intranuclear component of the nuclear tRNA export machinery of Saccharomyces cerevisiae. J. Biol. Chem. 278:32236-32245. http://dx.doi.org/10.1074/jbc.M302779200.
-
(2003)
J. Biol. Chem
, vol.278
, pp. 32236-32245
-
-
Steiner-Mosonyi, M.1
Leslie, D.M.2
Dehghani, H.3
Aitchison, J.D.4
Mangroo, D.5
-
49
-
-
0034177671
-
Nucleotides of the tRNA D-stem that play an important role in nuclear-tRNA export in Saccharomyces cerevisiae
-
Cleary JD, Mangroo D. 2000. Nucleotides of the tRNA D-stem that play an important role in nuclear-tRNA export in Saccharomyces cerevisiae. Biochem. J. 347:115-122. http://dx.doi.org/10.1042/0264-6021:3470115.
-
(2000)
Biochem. J
, vol.347
, pp. 115-122
-
-
Cleary, J.D.1
Mangroo, D.2
-
50
-
-
0035937098
-
Arc1p organizes the yeast aminoacyl-tRNA synthetase complex and stabilizes its interaction with the cognate tRNAs
-
Deinert K, Fasiolo F, Hurt EC, Simos G. 2001. Arc1p organizes the yeast aminoacyl-tRNA synthetase complex and stabilizes its interaction with the cognate tRNAs. J. Biol. Chem. 276:6000-6008. http://dx.doi.org/10.1074/jbc.M008682200.
-
(2001)
J. Biol. Chem
, vol.276
, pp. 6000-6008
-
-
Deinert, K.1
Fasiolo, F.2
Hurt, E.C.3
Simos, G.4
-
51
-
-
0024343258
-
Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein
-
Celenza JL, Carlson M. 1989. Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol. Cell. Biol. 9:5034-5044.
-
(1989)
Mol. Cell. Biol
, vol.9
, pp. 5034-5044
-
-
Celenza, J.L.1
Carlson, M.2
-
52
-
-
0043210478
-
Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstreamAMPKkinases and study of their roles by site-directed mutagenesis
-
Woods A, Vertommen D, Neumann D, Turk R, Bayliss J, Schlattner U, Wallimann T, Carling D, Rider MH. 2003. Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstreamAMPKkinases and study of their roles by site-directed mutagenesis. J. Biol. Chem.278:28434-28442. http://dx.doi.org/10.1074/jbc.M303946200.
-
(2003)
J. Biol. Chem
, vol.278
, pp. 28434-28442
-
-
Woods, A.1
Vertommen, D.2
Neumann, D.3
Turk, R.4
Bayliss, J.5
Schlattner, U.6
Wallimann, T.7
Carling, D.8
Rider, M.H.9
-
53
-
-
79952294333
-
Interaction of SNF1 protein kinase with its activating kinase Sak1
-
Liu Y, Xu X, Carlson M. 2011. Interaction of SNF1 protein kinase with its activating kinase Sak1. Eukaryot. Cell 10:313-319. http://dx.doi.org/10.1128/EC.00291-10.
-
(2011)
Eukaryot. Cell
, vol.10
, pp. 313-319
-
-
Liu, Y.1
Xu, X.2
Carlson, M.3
-
54
-
-
0041700137
-
Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex
-
Sutherland CM, Hawley SA, McCartney RR, Leech A, Stark MJ, Schmidt MC, Hardie DG. 2003. Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr. Biol. 13:1299-1305. http://dx.doi.org/10.1016/S0960-9822(03)00459-7.
-
(2003)
Curr. Biol
, vol.13
, pp. 1299-1305
-
-
Sutherland, C.M.1
Hawley, S.A.2
McCartney, R.R.3
Leech, A.4
Stark, M.J.5
Schmidt, M.C.6
Hardie, D.G.7
-
55
-
-
0041305909
-
Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases
-
Hong SP, Leiper FC, Woods A, Carling D, Carlson M. 2003. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc. Natl. Acad. Sci. U. S. A. 100:8839-8843. http://dx.doi.org /10.1073/pnas.1533136100.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A
, vol.100
, pp. 8839-8843
-
-
Hong, S.P.1
Leiper, F.C.2
Woods, A.3
Carling, D.4
Carlson, M.5
-
56
-
-
0021971793
-
Differential activation of yeast adenylate cyclase by wildtype and mutant RAS proteins
-
Broek D, Samiy N, Fasano O, Fujiyama A, Tamanoi F, Northup J, Wigler M. 1985. Differential activation of yeast adenylate cyclase by wildtype and mutant RAS proteins. Cell 41:763-769. http://dx.doi.org/10.1016/S0092-8674(85)80057-X.
-
(1985)
Cell
, vol.41
, pp. 763-769
-
-
Broek, D.1
Samiy, N.2
Fasano, O.3
Fujiyama, A.4
Tamanoi, F.5
Northup, J.6
Wigler, M.7
-
57
-
-
0033966775
-
Nutritional control of nucleocytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae
-
Griffioen G, Anghileri P, Imre E, Baroni MD, Ruis H. 2000. Nutritional control of nucleocytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae. J. Biol. Chem. 275:1449-1456. http://dx.doi.org/10.1074/jbc.275.2.1449.
-
(2000)
J. Biol. Chem
, vol.275
, pp. 1449-1456
-
-
Griffioen, G.1
Anghileri, P.2
Imre, E.3
Baroni, M.D.4
Ruis, H.5
-
58
-
-
0029852345
-
Novel, activated RAS mutations alter protein-protein interactions
-
Dalley BK, Cannon JF. 1996. Novel, activated RAS mutations alter protein-protein interactions. Oncogene 13:1209-1220.
-
(1996)
Oncogene
, vol.13
, pp. 1209-1220
-
-
Dalley, B.K.1
Cannon, J.F.2
-
59
-
-
0028820129
-
The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A
-
Varela JC, Praekelt UM, Meacock PA, Planta RJ, Mager WH. 1995. The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol. Cell. Biol. 15:6232-6245.
-
(1995)
Mol. Cell. Biol
, vol.15
, pp. 6232-6245
-
-
Varela, J.C.1
Praekelt, U.M.2
Meacock, P.A.3
Planta, R.J.4
Mager, W.H.5
-
60
-
-
0032127462
-
Yeast PKA represses Msn2p/Msn4pdependent gene expression to regulate growth, stress response and glycogen accumulation
-
Smith A, Ward MP, Garrett S. 1998. Yeast PKA represses Msn2p/Msn4pdependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J. 17:3556-3564. http://dx.doi.org/10.1093 /emboj/17.13.3556.
-
(1998)
EMBO J
, vol.17
, pp. 3556-3564
-
-
Smith, A.1
Ward, M.P.2
Garrett, S.3
-
61
-
-
0032530778
-
Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase
-
Reinders A, Burckert N, Boller T, Wiemken A, De Virgilio C. 1998. Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. Genes Dev. 12:2943-2955. http://dx.doi.org/10.1101/gad.12.18.2943.
-
(1998)
Genes Dev
, vol.12
, pp. 2943-2955
-
-
Reinders, A.1
Burckert, N.2
Boller, T.3
Wiemken, A.4
De Virgilio, C.5
-
62
-
-
57449105428
-
PhosphoPep: A database of protein phosphorylation sites in model organisms
-
Bodenmiller B, Campbell D, Gerrits B, Lam H, Jovanovic M, Picotti P, Schlapbach R, Aebersold R. 2008. PhosphoPep: a database of protein phosphorylation sites in model organisms. Nat. Biotechnol. 26:1339-1340. http://dx.doi.org/10.1038/nbt1208-1339.
-
(2008)
Nat. Biotechnol
, vol.26
, pp. 1339-1340
-
-
Bodenmiller, B.1
Campbell, D.2
Gerrits, B.3
Lam, H.4
Jovanovic, M.5
Picotti, P.6
Schlapbach, R.7
Aebersold, R.8
-
63
-
-
14944345703
-
Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins
-
Kinoshita E, Yamada A, Takeda H, Kinoshita-Kikuta E, Koike T. 2005. Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins. J. Sep. Sci. 28:155-162. http://dx.doi.org/10.1002/jssc.200401833.
-
(2005)
J. Sep. Sci
, vol.28
, pp. 155-162
-
-
Kinoshita, E.1
Yamada, A.2
Takeda, H.3
Kinoshita-Kikuta, E.4
Koike, T.5
-
64
-
-
3042760385
-
The Ras/PKA signaling pathway directly targets the Srb9 protein, a component of the generalRNA polymerase II transcription apparatus
-
Chang YW, Howard SC, Herman PK. 2004. The Ras/PKA signaling pathway directly targets the Srb9 protein, a component of the generalRNA polymerase II transcription apparatus. Mol. Cell 15:107-116. http://dx.doi.org/10.1016/j.molcel.2004.05.021.
-
(2004)
Mol. Cell
, vol.15
, pp. 107-116
-
-
Chang, Y.W.1
Howard, S.C.2
Herman, P.K.3
-
65
-
-
33646781928
-
Characterization of yeast pyruvate kinase 1 as a protein kinase A substrate, and specificity of the phosphorylation site sequence in the whole protein
-
Portela P, Moreno S, Rossi S. 2006. Characterization of yeast pyruvate kinase 1 as a protein kinase A substrate, and specificity of the phosphorylation site sequence in the whole protein. Biochem. J. 396:117-126. http: //dx.doi.org/10.1042/BJ20051642.
-
(2006)
Biochem. J
, vol.396
, pp. 117-126
-
-
Portela, P.1
Moreno, S.2
Rossi, S.3
|