메뉴 건너뛰기




Volumn 13, Issue 2, 2014, Pages 209-230

Protein kinase a is part of a mechanism that regulates nuclear reimport of the nuclear tRNA export receptors Los1p and Msn5p

Author keywords

[No Author keywords available]

Indexed keywords

CYCLIC AMP DEPENDENT PROTEIN KINASE; GLUCOSE; KARYOPHERIN; LOS1 PROTEIN, S CEREVISIAE; MSN5 PROTEIN, S CEREVISIAE; NUCLEOPORIN; SACCHAROMYCES CEREVISIAE PROTEIN; TRANSFER RNA;

EID: 84893344050     PISSN: 15359778     EISSN: None     Source Type: Journal    
DOI: 10.1128/EC.00214-13     Document Type: Article
Times cited : (5)

References (65)
  • 1
    • 84864393542 scopus 로고    scopus 로고
    • Adaptation to stress in yeast: To translate or not? Biochem
    • Simpson CE, Ashe MP. 2012. Adaptation to stress in yeast: to translate or not? Biochem. Soc. Trans. 40:794-799. http://dx.doi.org/10.1042 /BST20120078.
    • (2012) Soc. Trans , vol.40 , pp. 794-799
    • Simpson, C.E.1    Ashe, M.P.2
  • 2
    • 83455177213 scopus 로고    scopus 로고
    • Target of rapamycin (TOR) in nutrient signaling and growth control
    • Loewith R, Hall MN. 2011. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189:1177-1201. http://dx.doi.org /10.1534/genetics.111.133363.
    • (2011) Genetics , vol.189 , pp. 1177-1201
    • Loewith, R.1    Hall, M.N.2
  • 3
    • 73249152807 scopus 로고    scopus 로고
    • Life in the midst of scarcity: Adaptations to nutrient availability in Saccharomyces cerevisiae
    • Smets B, Ghillebert R, De Snijder P, Binda M, Swinnen E, De Virgilio C, Winderickx J. 2010. Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr. Genet. 56:1-32. http: //dx.doi.org/10.1007/s00294-009-0287-1.
    • (2010) Curr. Genet , vol.56 , pp. 1-32
    • Smets, B.1    Ghillebert, R.2    De Snijder, P.3    Binda, M.4    Swinnen, E.5    De Virgilio, C.6    Winderickx, J.7
  • 4
    • 0035336970 scopus 로고    scopus 로고
    • Glucose-sensing mechanisms in eukaryotic cells
    • Rolland F, Winderickx J, Thevelein JM. 2001. Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem. Sci. 26:310-317. http://dx.doi.org/10.1016/S0968-0004(01)01805-9.
    • (2001) Trends Biochem. Sci , vol.26 , pp. 310-317
    • Rolland, F.1    Winderickx, J.2    Thevelein, J.M.3
  • 5
    • 6344256284 scopus 로고    scopus 로고
    • Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae
    • Colombo S, Ronchetti D, Thevelein JM, Winderickx J, Martegani E. 2004. Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae. J. Biol. Chem. 279:46715-46722. http://dx.doi.org/10.1074/jbc.M405136200.
    • (2004) J. Biol. Chem , vol.279 , pp. 46715-46722
    • Colombo, S.1    Ronchetti, D.2    Thevelein, J.M.3    Winderickx, J.4    Martegani, E.5
  • 6
    • 0032986914 scopus 로고    scopus 로고
    • A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose
    • Kraakman L, Lemaire K, Ma P, Teunissen AW, Donaton MC, Van Dijck P, Winderickx J, De Winde JH, Thevelein JM. 1999. A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol. Microbiol. 32:1002-1012. http://dx.doi.org/10.1046/j.1365-2958.1999.01413.x.
    • (1999) Mol. Microbiol , vol.32 , pp. 1002-1012
    • Kraakman, L.1    Lemaire, K.2    Ma, P.3    Teunissen, A.W.4    Donaton, M.C.5    Van Dijck, P.6    Winderickx, J.7    De Winde, J.H.8    Thevelein, J.M.9
  • 7
    • 0033745888 scopus 로고    scopus 로고
    • Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process
    • Rolland F, De Winde JH, Lemaire K, Boles E, Thevelein JM, Winderickx J. 2000. Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol. Microbiol. 38: 348-358. http://dx.doi.org/10.1046/j.1365-2958.2000.02125.x.
    • (2000) Mol. Microbiol , vol.38 , pp. 348-358
    • Rolland, F.1    De Winde, J.H.2    Lemaire, K.3    Boles, E.4    Thevelein, J.M.5    Winderickx, J.6
  • 9
    • 0023664521 scopus 로고
    • Expression in Escherichia coli of BCY1, the regulatory subunit of cyclic AMPdependent protein kinase from Saccharomyces cerevisiae. Purification and characterization
    • Johnson KE, Cameron S, Toda T, Wigler M, Zoller MJ. 1987. Expression in Escherichia coli of BCY1, the regulatory subunit of cyclic AMPdependent protein kinase from Saccharomyces cerevisiae. Purification and characterization. J. Biol. Chem. 262:8636-8642.
    • (1987) J. Biol. Chem , vol.262 , pp. 8636-8642
    • Johnson, K.E.1    Cameron, S.2    Toda, T.3    Wigler, M.4    Zoller, M.J.5
  • 10
    • 0023947759 scopus 로고
    • Mutagenesis of the regulatory subunit of yeast cAMP-dependent protein kinase. Isolation of site-directed mutants with altered binding affinity for catalytic subunit
    • Kuret J, Johnson KE, Nicolette C, Zoller MJ. 1988. Mutagenesis of the regulatory subunit of yeast cAMP-dependent protein kinase. Isolation of site-directed mutants with altered binding affinity for catalytic subunit. J. Biol. Chem. 263:9149-9154.
    • (1988) J. Biol. Chem , vol.263 , pp. 9149-9154
    • Kuret, J.1    Johnson, K.E.2    Nicolette, C.3    Zoller, M.J.4
  • 11
    • 0023658335 scopus 로고
    • Three different genes in S. cerevisiae encode the catalytic subunits of the cAMPdependent protein kinase
    • Toda T, Cameron S, Sass P, Zoller M, Wigler M. 1987. Three different genes in S. cerevisiae encode the catalytic subunits of the cAMPdependent protein kinase. Cell 50:277-287. http://dx.doi.org/10.1016 /0092-8674(87)90223-6.
    • (1987) Cell , vol.50 , pp. 277-287
    • Toda, T.1    Cameron, S.2    Sass, P.3    Zoller, M.4    Wigler, M.5
  • 12
    • 0023130013 scopus 로고
    • Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae
    • Toda T, Cameron S, Sass P, Zoller M, Scott JD, McMullen B, Hurwitz M, Krebs EG, Wigler M. 1987. Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:1371-1377.
    • (1987) Mol. Cell. Biol , vol.7 , pp. 1371-1377
    • Toda, T.1    Cameron, S.2    Sass, P.3    Zoller, M.4    Scott, J.D.5    McMullen, B.6    Hurwitz, M.7    Krebs, E.G.8    Wigler, M.9
  • 13
    • 0348047591 scopus 로고    scopus 로고
    • TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0
    • Pedruzzi I, Dubouloz F, Cameroni E, Wanke V, Roosen J, Winderickx J, De Virgilio C. 2003. TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Mol. Cell 12:1607-1613. http://dx.doi.org/10.1016/S1097-2765(03)00485-4.
    • (2003) Mol. Cell , vol.12 , pp. 1607-1613
    • Pedruzzi, I.1    Dubouloz, F.2    Cameroni, E.3    Wanke, V.4    Roosen, J.5    Winderickx, J.6    De Virgilio, C.7
  • 14
    • 0022859343 scopus 로고
    • Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae
    • Sass P, Field J, Nikawa J, Toda T, Wigler M. 1986. Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 83:9303-9307. http://dx.doi.org/10.1073/pnas.83.24.9303.
    • (1986) Proc. Natl. Acad. Sci. U. S. A , vol.83 , pp. 9303-9307
    • Sass, P.1    Field, J.2    Nikawa, J.3    Toda, T.4    Wigler, M.5
  • 15
    • 0023427567 scopus 로고
    • Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae
    • Nikawa J, Sass P, Wigler M. 1987. Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 7:3629-3636.
    • (1987) Mol. Cell. Biol , vol.7 , pp. 3629-3636
    • Nikawa, J.1    Sass, P.2    Wigler, M.3
  • 16
    • 0035173012 scopus 로고    scopus 로고
    • Nucleocytoplasmic distribution of budding yeast protein kinase A regulatory subunit Bcy1 requires Zds1 and is regulated by Yak1-dependent phosphorylation of its targeting domain
    • Griffioen G, Branduardi P, Ballarini A, Anghileri P, Norbeck J, Baroni MD, Ruis H. 2001. Nucleocytoplasmic distribution of budding yeast protein kinase A regulatory subunit Bcy1 requires Zds1 and is regulated by Yak1-dependent phosphorylation of its targeting domain. Mol. Cell. Biol. 21:511-523. http://dx.doi.org/10.1128/MCB.21.2.511-523.2001.
    • (2001) Mol. Cell. Biol , vol.21 , pp. 511-523
    • Griffioen, G.1    Branduardi, P.2    Ballarini, A.3    Anghileri, P.4    Norbeck, J.5    Baroni, M.D.6    Ruis, H.7
  • 17
    • 0035965277 scopus 로고    scopus 로고
    • Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit
    • McCartney RR, Schmidt MC. 2001. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J. Biol. Chem. 276:36460-36466. http://dx.doi.org/10.1074/jbc.M104418200.
    • (2001) J. Biol. Chem. , vol.276 , pp. 36460-36466
    • McCartney, R.R.1    Schmidt, M.C.2
  • 18
    • 38049174646 scopus 로고    scopus 로고
    • Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase
    • Rubenstein EM, McCartney RR, Zhang C, Shokat KM, Shirra MK, Arndt KM, Schmidt MC. 2008. Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J. Biol. Chem. 283:222-230. http://dx.doi.org /10.1074/jbc.M707957200.
    • (2008) J. Biol. Chem , vol.283 , pp. 222-230
    • Rubenstein, E.M.1    McCartney, R.R.2    Zhang, C.3    Shokat, K.M.4    Shirra, M.K.5    Arndt, K.M.6    Schmidt, M.C.7
  • 19
    • 50349099673 scopus 로고    scopus 로고
    • Roles of the glycogen-binding domain and Snf4 in glucose inhibition of SNF1 protein kinase
    • Momcilovic M, Iram SH, Liu Y, Carlson M. 2008. Roles of the glycogen-binding domain and Snf4 in glucose inhibition of SNF1 protein kinase. J. Biol. Chem. 283:19521-19529. http://dx.doi.org/10.1074/jbc.M803624200.
    • (2008) J. Biol. Chem , vol.283 , pp. 19521-19529
    • Momcilovic, M.1    Iram, S.H.2    Liu, Y.3    Carlson, M.4
  • 20
    • 0030953974 scopus 로고    scopus 로고
    • The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex
    • Jiang R, Carlson M. 1997. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol. Cell. Biol. 17:2099-2106.
    • (1997) Mol. Cell. Biol , vol.17 , pp. 2099-2106
    • Jiang, R.1    Carlson, M.2
  • 21
    • 0035338114 scopus 로고    scopus 로고
    • Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism
    • Vincent O, Townley R, Kuchin S, Carlson M. 2001. Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Genes Dev. 15:1104-1114. http://dx.doi.org/10.1101/gad.879301.
    • (2001) Genes Dev , vol.15 , pp. 1104-1114
    • Vincent, O.1    Townley, R.2    Kuchin, S.3    Carlson, M.4
  • 22
    • 84866076360 scopus 로고    scopus 로고
    • Nutritional control of growth and development in yeast
    • Broach JR. 2012. Nutritional control of growth and development in yeast. Genetics 192:73-105. http://dx.doi.org/10.1534/genetics.111.135731.
    • (2012) Genetics , vol.192 , pp. 73-105
    • Broach, J.R.1
  • 23
    • 0033974002 scopus 로고    scopus 로고
    • Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase
    • Sanz P, Alms GR, Haystead TA, Carlson M. 2000. Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol. Cell. Biol. 20:1321-1328. http://dx.doi.org/10.1128/MCB.20.4.1321-1328.2000.
    • (2000) Mol. Cell. Biol , vol.20 , pp. 1321-1328
    • Sanz, P.1    Alms, G.R.2    Haystead, T.A.3    Carlson, M.4
  • 24
    • 79953314266 scopus 로고    scopus 로고
    • Nutrient stress does not cause retrograde transport of cytoplasmic tRNA to the nucleus in evolutionarily diverse organisms
    • Chafe SC, Pierce JB, Eswara MB, McGuire AT, Mangroo D. 2011. Nutrient stress does not cause retrograde transport of cytoplasmic tRNA to the nucleus in evolutionarily diverse organisms. Mol. Biol. Cell 22: 1091-1103. http://dx.doi.org/10.1091/mbc.E09-07-0594.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 1091-1103
    • Chafe, S.C.1    Pierce, J.B.2    Eswara, M.B.3    McGuire, A.T.4    Mangroo, D.5
  • 25
    • 77957675933 scopus 로고    scopus 로고
    • The ins and outs of nuclear re-export of retrogradely transported tRNAs in Saccharomyces cerevisiae
    • Pierce JB, Eswara MB, Mangroo D. 2010. The ins and outs of nuclear re-export of retrogradely transported tRNAs in Saccharomyces cerevisiae. Nucleus 1:224-230. http://dx.doi.org/10.4161/nucl.1.3.11250.
    • (2010) Nucleus , vol.1 , pp. 224-230
    • Pierce, J.B.1    Eswara, M.B.2    Mangroo, D.3
  • 26
    • 73949110601 scopus 로고    scopus 로고
    • Utp9p facilitates Msn5p-mediated nuclear reexport of retrograded tRNAs in Saccharomyces cerevisiae
    • Eswara MB, McGuire AT, Pierce JB, Mangroo D. 2009. Utp9p facilitates Msn5p-mediated nuclear reexport of retrograded tRNAs in Saccharomyces cerevisiae. Mol. Biol. Cell 20:5007-5025. http://dx.doi.org/10.1091 /mbc.E09-06-0490.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 5007-5025
    • Eswara, M.B.1    McGuire, A.T.2    Pierce, J.B.3    Mangroo, D.4
  • 27
    • 34250711447 scopus 로고    scopus 로고
    • Inorganic phosphate deprivation causes tRNA nuclear accumulation via retrograde transport in Saccharomyces cerevisiae
    • Hurto RL, Tong AH, Boone C, Hopper AK. 2007. Inorganic phosphate deprivation causes tRNA nuclear accumulation via retrograde transport in Saccharomyces cerevisiae. Genetics 176:841-852. http://dx.doi.org/10.1534/genetics.106.069732.
    • (2007) Genetics , vol.176 , pp. 841-852
    • Hurto, R.L.1    Tong, A.H.2    Boone, C.3    Hopper, A.K.4
  • 28
    • 76649140836 scopus 로고    scopus 로고
    • Regulation of tRNA bidirectional nuclear-cytoplasmic trafficking in Saccharomyces cerevisiae
    • Murthi A, Shaheen HH, Huang HY, Preston MA, Lai TP, Phizicky EM, Hopper AK. 2010. Regulation of tRNA bidirectional nuclear-cytoplasmic trafficking in Saccharomyces cerevisiae. Mol. Biol. Cell 21:639-649. http: //dx.doi.org/10.1091/mbc.E09-07-0551.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 639-649
    • Murthi, A.1    Shaheen, H.H.2    Huang, H.Y.3    Preston, M.A.4    Lai, T.P.5    Phizicky, E.M.6    Hopper, A.K.7
  • 29
    • 23844508130 scopus 로고    scopus 로고
    • Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae
    • Shaheen HH, Hopper AK. 2005. Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 102:11290-11295. http://dx.doi.org/10.1073/pnas.0503836102.
    • (2005) Proc. Natl. Acad. Sci. U. S. A , vol.102 , pp. 11290-11295
    • Shaheen, H.H.1    Hopper, A.K.2
  • 30
    • 34250789855 scopus 로고    scopus 로고
    • Rapid and reversible nuclear accumulation of cytoplasmic tRNA in response to nutrient availability
    • Whitney ML, Hurto RL, Shaheen HH, Hopper AK. 2007. Rapid and reversible nuclear accumulation of cytoplasmic tRNA in response to nutrient availability. Mol. Biol. Cell 18:2678-2686. http://dx.doi.org/10.1091/mbc.E07-01-0006.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 2678-2686
    • Whitney, M.L.1    Hurto, R.L.2    Shaheen, H.H.3    Hopper, A.K.4
  • 31
    • 0033431040 scopus 로고    scopus 로고
    • Nuclear tRNA aminoacylation and its role in nuclear export of endogenous tRNAs in Saccharomyces cerevisiae
    • Sarkar S, Azad AK, Hopper AK. 1999. Nuclear tRNA aminoacylation and its role in nuclear export of endogenous tRNAs in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 96:14366-14371. http://dx.doi.org/10.1073/pnas.96.25.14366.
    • (1999) Proc. Natl. Acad. Sci. U. S. A , vol.96 , pp. 14366-14371
    • Sarkar, S.1    Azad, A.K.2    Hopper, A.K.3
  • 32
    • 1642464577 scopus 로고    scopus 로고
    • The nuclear tRNA aminoacylation-dependent pathway may be the principal route used to export tRNA from the nucleus in Saccharomyces cerevisiae
    • Steiner-Mosonyi M, Mangroo D. 2004. The nuclear tRNA aminoacylation-dependent pathway may be the principal route used to export tRNA from the nucleus in Saccharomyces cerevisiae. Biochem. J. 378:809-816. http://dx.doi.org/10.1042/BJ20031306.
    • (2004) Biochem. J , vol.378 , pp. 809-816
    • Steiner-Mosonyi, M.1    Mangroo, D.2
  • 33
    • 34948909593 scopus 로고    scopus 로고
    • Utp8p is a nucleolar tRNA-binding protein that forms a complex with components of the nuclear tRNA export machinery in Saccharomyces cerevisiae
    • Strub BR, Eswara MB, Pierce JB, Mangroo D. 2007. Utp8p is a nucleolar tRNA-binding protein that forms a complex with components of the nuclear tRNA export machinery in Saccharomyces cerevisiae. Mol. Biol. Cell 18:3845-3859. http://dx.doi.org/10.1091/mbc.E06-11-1016.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 3845-3859
    • Strub, B.R.1    Eswara, M.B.2    Pierce, J.B.3    Mangroo, D.4
  • 34
    • 0034175551 scopus 로고    scopus 로고
    • An aminoacylation-dependent nuclear tRNA export pathway in yeast
    • Grosshans H, Hurt E, Simos G. 2000. An aminoacylation-dependent nuclear tRNA export pathway in yeast. Genes Dev. 14:830-840. http://dx.doi.org/10.1101/gad.14.7.830.
    • (2000) Genes Dev , vol.14 , pp. 830-840
    • Grosshans, H.1    Hurt, E.2    Simos, G.3
  • 35
    • 84870477196 scopus 로고    scopus 로고
    • Utp22p acts in concert with Utp8p to channel aminoacyl-tRNA from the nucleus to the nuclear tRNA export receptor Los1p but not Msn5p
    • Eswara MB, Clayton A, Mangroo D. 2012. Utp22p acts in concert with Utp8p to channel aminoacyl-tRNA from the nucleus to the nuclear tRNA export receptor Los1p but not Msn5p. Biochem. Cell Biol. 90:731-748. http://dx.doi.org/10.1139/o2012-034.
    • (2012) Biochem. Cell Biol , vol.90 , pp. 731-748
    • Eswara, M.B.1    Clayton, A.2    Mangroo, D.3
  • 37
    • 0032510462 scopus 로고    scopus 로고
    • Identification of a nuclear export receptor for tRNA
    • Arts GJ, Fornerod M, Mattaj IW. 1998. Identification of a nuclear export receptor for tRNA. Curr. Biol. 8:305-314. http://dx.doi.org/10.1016 /S0960-9822(98)70130-7.
    • (1998) Curr. Biol , vol.8 , pp. 305-314
    • Arts, G.J.1    Fornerod, M.2    Mattaj, I.W.3
  • 38
    • 0037112842 scopus 로고    scopus 로고
    • Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA
    • Calado A, Treichel N, Muller EC, Otto A, Kutay U. 2002. Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. EMBO J. 21:6216-6224. http://dx.doi.org/10.1093/emboj/cdf620.
    • (2002) EMBO J , vol.21 , pp. 6216-6224
    • Calado, A.1    Treichel, N.2    Muller, E.C.3    Otto, A.4    Kutay, U.5
  • 39
    • 0037112790 scopus 로고    scopus 로고
    • Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm
    • Bohnsack MT, Regener K, Schwappach B, Saffrich R, Paraskeva E, Hartmann E, Gorlich D. 2002. Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. EMBO J. 21:6205-6215. http://dx.doi.org/10.1093/emboj /cdf613.
    • (2002) EMBO J , vol.21 , pp. 6205-6215
    • Bohnsack, M.T.1    Regener, K.2    Schwappach, B.3    Saffrich, R.4    Paraskeva, E.5    Hartmann, E.6    Gorlich, D.7
  • 40
    • 21744453148 scopus 로고    scopus 로고
    • TRNA actively shuttles between the nucleus and cytosol in yeast
    • Takano A, Endo T, Yoshihisa T. 2005. tRNA actively shuttles between the nucleus and cytosol in yeast. Science 309:140-142. http://dx.doi.org/10.1126/science.1113346.
    • (2005) Science , vol.309 , pp. 140-142
    • Takano, A.1    Endo, T.2    Yoshihisa, T.3
  • 41
    • 84855981708 scopus 로고    scopus 로고
    • Cex1p facilitates Rna1p-mediated dissociation of the Los1p-tRNA-Gsp1p-GTP export complex
    • McGuire AT, Mangroo D. 2012. Cex1p facilitates Rna1p-mediated dissociation of the Los1p-tRNA-Gsp1p-GTP export complex. Traffic 13: 234-256. http://dx.doi.org/10.1111/j.1600-0854.2011.01304.x.
    • (2012) Traffic , vol.13 , pp. 234-256
    • McGuire, A.T.1    Mangroo, D.2
  • 42
    • 33846492605 scopus 로고    scopus 로고
    • Cex1p is a novel cytoplasmic component of the Saccharomyces cerevisiae nuclear tRNA export machinery
    • McGuire AT, Mangroo D. 2007. Cex1p is a novel cytoplasmic component of the Saccharomyces cerevisiae nuclear tRNA export machinery. EMBO J. 26:288-300. http://dx.doi.org/10.1038/sj.emboj.7601493.
    • (2007) EMBO J , vol.26 , pp. 288-300
    • McGuire, A.T.1    Mangroo, D.2
  • 43
    • 0031771756 scopus 로고    scopus 로고
    • Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA
    • Hellmuth K, Lau DM, Bischoff FR, Kunzler M, Hurt E, Simos G. 1998. Yeast Los1p has properties of an exportin-like nucleocytoplasmic transport factor for tRNA. Mol. Cell. Biol. 18:6374-6386.
    • (1998) Mol. Cell. Biol , vol.18 , pp. 6374-6386
    • Hellmuth, K.1    Lau, D.M.2    Bischoff, F.R.3    Kunzler, M.4    Hurt, E.5    Simos, G.6
  • 44
    • 79953033536 scopus 로고    scopus 로고
    • Arabidopsis At2g40730 encodes a cytoplasmic protein involved in nuclear tRNA export
    • Johnstone AD, Mullen RT, Mangroo D. 2011. Arabidopsis At2g40730 encodes a cytoplasmic protein involved in nuclear tRNA export. Botany 89:175-190. http://dx.doi.org/10.1139/B10-090.
    • (2011) Botany , vol.89 , pp. 175-190
    • Johnstone, A.D.1    Mullen, R.T.2    Mangroo, D.3
  • 45
    • 77954638428 scopus 로고    scopus 로고
    • Scyl1 facilitates nuclear tRNA export in mammalian cells by acting at the nuclear pore complex
    • Chafe SC, Mangroo D. 2010. Scyl1 facilitates nuclear tRNA export in mammalian cells by acting at the nuclear pore complex. Mol. Biol. Cell 21:2483-2499. http://dx.doi.org/10.1091/mbc.E10-03-0176.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 2483-2499
    • Chafe, S.C.1    Mangroo, D.2
  • 46
    • 84857241174 scopus 로고    scopus 로고
    • Schizosaccharomyces pombe, unlike Saccharomyces cerevisiae, may not directly regulate nuclear-cytoplasmic transport of spliced tRNAs in response to nutrient availability
    • Pierce JB, Mangroo D. 2011. Schizosaccharomyces pombe, unlike Saccharomyces cerevisiae, may not directly regulate nuclear-cytoplasmic transport of spliced tRNAs in response to nutrient availability. Biochem. Cell Biol. 89:554-561. http://dx.doi.org/10.1139/o11-061.
    • (2011) Biochem. Cell Biol , vol.89 , pp. 554-561
    • Pierce, J.B.1    Mangroo, D.2
  • 47
    • 34250165409 scopus 로고    scopus 로고
    • The localization of nuclear exporters of the importin-beta family is regulated by Snf1 kinase, nutrient supply and stress
    • Quan X, Yu J, Bussey H, Stochaj U. 2007. The localization of nuclear exporters of the importin-beta family is regulated by Snf1 kinase, nutrient supply and stress. Biochim. Biophys. Acta 1773:1052-1061. http://dx.doi.org/10.1016/j.bbamcr.2007.04.014.
    • (2007) Biochim. Biophys. Acta , vol.1773 , pp. 1052-1061
    • Quan, X.1    Yu, J.2    Bussey, H.3    Stochaj, U.4
  • 48
    • 0041856095 scopus 로고    scopus 로고
    • Utp8p is an essential intranuclear component of the nuclear tRNA export machinery of Saccharomyces cerevisiae
    • Steiner-Mosonyi M, Leslie DM, Dehghani H, Aitchison JD, Mangroo D. 2003. Utp8p is an essential intranuclear component of the nuclear tRNA export machinery of Saccharomyces cerevisiae. J. Biol. Chem. 278:32236-32245. http://dx.doi.org/10.1074/jbc.M302779200.
    • (2003) J. Biol. Chem , vol.278 , pp. 32236-32245
    • Steiner-Mosonyi, M.1    Leslie, D.M.2    Dehghani, H.3    Aitchison, J.D.4    Mangroo, D.5
  • 49
    • 0034177671 scopus 로고    scopus 로고
    • Nucleotides of the tRNA D-stem that play an important role in nuclear-tRNA export in Saccharomyces cerevisiae
    • Cleary JD, Mangroo D. 2000. Nucleotides of the tRNA D-stem that play an important role in nuclear-tRNA export in Saccharomyces cerevisiae. Biochem. J. 347:115-122. http://dx.doi.org/10.1042/0264-6021:3470115.
    • (2000) Biochem. J , vol.347 , pp. 115-122
    • Cleary, J.D.1    Mangroo, D.2
  • 50
    • 0035937098 scopus 로고    scopus 로고
    • Arc1p organizes the yeast aminoacyl-tRNA synthetase complex and stabilizes its interaction with the cognate tRNAs
    • Deinert K, Fasiolo F, Hurt EC, Simos G. 2001. Arc1p organizes the yeast aminoacyl-tRNA synthetase complex and stabilizes its interaction with the cognate tRNAs. J. Biol. Chem. 276:6000-6008. http://dx.doi.org/10.1074/jbc.M008682200.
    • (2001) J. Biol. Chem , vol.276 , pp. 6000-6008
    • Deinert, K.1    Fasiolo, F.2    Hurt, E.C.3    Simos, G.4
  • 51
    • 0024343258 scopus 로고
    • Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein
    • Celenza JL, Carlson M. 1989. Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol. Cell. Biol. 9:5034-5044.
    • (1989) Mol. Cell. Biol , vol.9 , pp. 5034-5044
    • Celenza, J.L.1    Carlson, M.2
  • 52
    • 0043210478 scopus 로고    scopus 로고
    • Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstreamAMPKkinases and study of their roles by site-directed mutagenesis
    • Woods A, Vertommen D, Neumann D, Turk R, Bayliss J, Schlattner U, Wallimann T, Carling D, Rider MH. 2003. Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstreamAMPKkinases and study of their roles by site-directed mutagenesis. J. Biol. Chem.278:28434-28442. http://dx.doi.org/10.1074/jbc.M303946200.
    • (2003) J. Biol. Chem , vol.278 , pp. 28434-28442
    • Woods, A.1    Vertommen, D.2    Neumann, D.3    Turk, R.4    Bayliss, J.5    Schlattner, U.6    Wallimann, T.7    Carling, D.8    Rider, M.H.9
  • 53
    • 79952294333 scopus 로고    scopus 로고
    • Interaction of SNF1 protein kinase with its activating kinase Sak1
    • Liu Y, Xu X, Carlson M. 2011. Interaction of SNF1 protein kinase with its activating kinase Sak1. Eukaryot. Cell 10:313-319. http://dx.doi.org/10.1128/EC.00291-10.
    • (2011) Eukaryot. Cell , vol.10 , pp. 313-319
    • Liu, Y.1    Xu, X.2    Carlson, M.3
  • 55
    • 0041305909 scopus 로고    scopus 로고
    • Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases
    • Hong SP, Leiper FC, Woods A, Carling D, Carlson M. 2003. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc. Natl. Acad. Sci. U. S. A. 100:8839-8843. http://dx.doi.org /10.1073/pnas.1533136100.
    • (2003) Proc. Natl. Acad. Sci. U. S. A , vol.100 , pp. 8839-8843
    • Hong, S.P.1    Leiper, F.C.2    Woods, A.3    Carling, D.4    Carlson, M.5
  • 56
    • 0021971793 scopus 로고
    • Differential activation of yeast adenylate cyclase by wildtype and mutant RAS proteins
    • Broek D, Samiy N, Fasano O, Fujiyama A, Tamanoi F, Northup J, Wigler M. 1985. Differential activation of yeast adenylate cyclase by wildtype and mutant RAS proteins. Cell 41:763-769. http://dx.doi.org/10.1016/S0092-8674(85)80057-X.
    • (1985) Cell , vol.41 , pp. 763-769
    • Broek, D.1    Samiy, N.2    Fasano, O.3    Fujiyama, A.4    Tamanoi, F.5    Northup, J.6    Wigler, M.7
  • 57
    • 0033966775 scopus 로고    scopus 로고
    • Nutritional control of nucleocytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae
    • Griffioen G, Anghileri P, Imre E, Baroni MD, Ruis H. 2000. Nutritional control of nucleocytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae. J. Biol. Chem. 275:1449-1456. http://dx.doi.org/10.1074/jbc.275.2.1449.
    • (2000) J. Biol. Chem , vol.275 , pp. 1449-1456
    • Griffioen, G.1    Anghileri, P.2    Imre, E.3    Baroni, M.D.4    Ruis, H.5
  • 58
    • 0029852345 scopus 로고    scopus 로고
    • Novel, activated RAS mutations alter protein-protein interactions
    • Dalley BK, Cannon JF. 1996. Novel, activated RAS mutations alter protein-protein interactions. Oncogene 13:1209-1220.
    • (1996) Oncogene , vol.13 , pp. 1209-1220
    • Dalley, B.K.1    Cannon, J.F.2
  • 59
    • 0028820129 scopus 로고
    • The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A
    • Varela JC, Praekelt UM, Meacock PA, Planta RJ, Mager WH. 1995. The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol. Cell. Biol. 15:6232-6245.
    • (1995) Mol. Cell. Biol , vol.15 , pp. 6232-6245
    • Varela, J.C.1    Praekelt, U.M.2    Meacock, P.A.3    Planta, R.J.4    Mager, W.H.5
  • 60
    • 0032127462 scopus 로고    scopus 로고
    • Yeast PKA represses Msn2p/Msn4pdependent gene expression to regulate growth, stress response and glycogen accumulation
    • Smith A, Ward MP, Garrett S. 1998. Yeast PKA represses Msn2p/Msn4pdependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J. 17:3556-3564. http://dx.doi.org/10.1093 /emboj/17.13.3556.
    • (1998) EMBO J , vol.17 , pp. 3556-3564
    • Smith, A.1    Ward, M.P.2    Garrett, S.3
  • 61
    • 0032530778 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase
    • Reinders A, Burckert N, Boller T, Wiemken A, De Virgilio C. 1998. Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. Genes Dev. 12:2943-2955. http://dx.doi.org/10.1101/gad.12.18.2943.
    • (1998) Genes Dev , vol.12 , pp. 2943-2955
    • Reinders, A.1    Burckert, N.2    Boller, T.3    Wiemken, A.4    De Virgilio, C.5
  • 63
    • 14944345703 scopus 로고    scopus 로고
    • Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins
    • Kinoshita E, Yamada A, Takeda H, Kinoshita-Kikuta E, Koike T. 2005. Novel immobilized zinc(II) affinity chromatography for phosphopeptides and phosphorylated proteins. J. Sep. Sci. 28:155-162. http://dx.doi.org/10.1002/jssc.200401833.
    • (2005) J. Sep. Sci , vol.28 , pp. 155-162
    • Kinoshita, E.1    Yamada, A.2    Takeda, H.3    Kinoshita-Kikuta, E.4    Koike, T.5
  • 64
    • 3042760385 scopus 로고    scopus 로고
    • The Ras/PKA signaling pathway directly targets the Srb9 protein, a component of the generalRNA polymerase II transcription apparatus
    • Chang YW, Howard SC, Herman PK. 2004. The Ras/PKA signaling pathway directly targets the Srb9 protein, a component of the generalRNA polymerase II transcription apparatus. Mol. Cell 15:107-116. http://dx.doi.org/10.1016/j.molcel.2004.05.021.
    • (2004) Mol. Cell , vol.15 , pp. 107-116
    • Chang, Y.W.1    Howard, S.C.2    Herman, P.K.3
  • 65
    • 33646781928 scopus 로고    scopus 로고
    • Characterization of yeast pyruvate kinase 1 as a protein kinase A substrate, and specificity of the phosphorylation site sequence in the whole protein
    • Portela P, Moreno S, Rossi S. 2006. Characterization of yeast pyruvate kinase 1 as a protein kinase A substrate, and specificity of the phosphorylation site sequence in the whole protein. Biochem. J. 396:117-126. http: //dx.doi.org/10.1042/BJ20051642.
    • (2006) Biochem. J , vol.396 , pp. 117-126
    • Portela, P.1    Moreno, S.2    Rossi, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.