메뉴 건너뛰기




Volumn 36, Issue 1, 2014, Pages 161-170

Learning ensemble classifiers via restricted Boltzmann machines

Author keywords

Bagging; Deep learning; Diversity; Ensemble classifier; Majority voting; Restricted Boltzmann machine

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); DATA MINING; DEEP LEARNING; FEATURE EXTRACTION; LEARNING SYSTEMS; TREES (MATHEMATICS); VIRTUAL REALITY;

EID: 84893100083     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2013.10.009     Document Type: Article
Times cited : (34)

References (54)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., Kohavi, R., 1999. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach. Learn. 36 (1-2), 105-139.
    • (1999) Mach. Learn. , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 2
    • 84858204091 scopus 로고    scopus 로고
    • A design heuristic for hybrid classification ensembles in machine learning
    • Baumgartner, D., Serpen, G., 2012. A design heuristic for hybrid classification ensembles in machine learning. Intell. Data Anal. 16 (2), 233-246.
    • (2012) Intell. Data Anal. , vol.16 , Issue.2 , pp. 233-246
    • Baumgartner, D.1    Serpen, G.2
  • 3
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio, Y., 2009. Learning deep architectures for AI. Found. Trends Mach. Learn. 2 (1), 1-127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 4
    • 84872577736 scopus 로고    scopus 로고
    • Practical recommendations for gradient-based training of deep architectures
    • Springer, Berlin
    • Bengio, Y., 2012. Practical recommendations for gradient-based training of deep architectures. In: Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, Vol. 7700. Springer, Berlin, pp. 437-478.
    • (2012) Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science , vol.7700 , pp. 437-478
    • Bengio, Y.1
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L, 1996. Bagging predictors. Mach. Learn. 24 (2), 123-140. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman, L, 2001. Random forests. Mach. Learn. 45 (1), 5-32. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 10
    • 84882277761 scopus 로고    scopus 로고
    • The flip-the-state transition operator for restricted boltzmann machines
    • Brügge, K., Fischer, A., Igel, C, 2013. The flip-the-state transition operator for restricted Boltzmann machines. Mach. Learn. 93 (1), 53-69.
    • (2013) Mach. Learn. , vol.93 , Issue.1 , pp. 53-69
    • Brügge, K.1    Fischer, A.2    Igel, C.3
  • 11
    • 84867091530 scopus 로고    scopus 로고
    • Feature extraction using restricted boltzmann machine for stock price prediction
    • Cai, X.G., Hu, S., Lin, X.L, 2012. Feature extraction using restricted Boltzmann machine for stock price prediction. In: Proc. IEEE Int. Conf. Comput. Sci. Autom. Eng., pp. 80-83.
    • (2012) Proc. IEEE Int. Conf. Comput. Sci. Autom. Eng. , pp. 80-83
    • Cai, X.G.1    Hu, S.2    Lin, X.L.3
  • 12
    • 27344446224 scopus 로고    scopus 로고
    • Ensemble learning for independent component analysis
    • DOI 10.1016/j.patcog.2005.06.018, PII S0031320305003341
    • Cheng, J., Liu, Q.S., Lu, H.Q., Chen, Y.W., 2006. Ensemble learning for independent component analysis. Pattern Recognit. 39 (1), 81-88. (Pubitemid 41525566)
    • (2006) Pattern Recognition , vol.39 , Issue.1 , pp. 81-88
    • Cheng, J.1    Liu, Q.2    Lu, H.3    Chen, Y.-W.4
  • 13
    • 70349421161 scopus 로고    scopus 로고
    • Manifold learning for multi-classifier systems via ensembles
    • Benediktsson, J.A., Kitller, J., Roli, F. (Eds.) Springer, Berlin
    • Crawford, M., Kim, W., 2009. Manifold learning for multi-classifier systems via ensembles. In: Benediktsson, J.A., Kitller, J., Roli, F. (Eds.), MCS, Lecture Notes in Computer Science, Vol. 5519. Springer, Berlin, pp. 519-528.
    • (2009) MCS, Lecture Notes in Computer Science , vol.5519 , pp. 519-528
    • Crawford, M.1    Kim, W.2
  • 14
    • 79958004813 scopus 로고    scopus 로고
    • An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction
    • De Bock, K.W., Poel, D.V., 2011. An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction. Expert Syst. Appl. 38 (10), 12293-12301.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.10 , pp. 12293-12301
    • De Bock, K.W.1    Poel, D.V.2
  • 15
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar, J., 2006. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. 7, 1-30. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 17
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • Džeroski, S., Zenko, B., 2004. Is combining classifiers with stacking better than selecting the best one? Mach. Learn. 54 (3), 255-273.
    • (2004) Mach. Learn. , vol.54 , Issue.3 , pp. 255-273
    • Džeroski, S.1    Zenko, B.2
  • 18
    • 84865595751 scopus 로고    scopus 로고
    • An introduction to restricted boltzmann machines
    • Alvarez et al. (Eds.) Springer, Berlin
    • Fischer, A., Igel, C, 2012. An introduction to restricted Boltzmann machines. In: Alvarez et al. (Eds.), CIARP, Lecture Notes in Computer Science, Vol. 7441. Springer, Berlin, pp. 14-36.
    • (2012) CIARP, Lecture Notes in Computer Science , vol.7441 , pp. 14-36
    • Fischer, A.1    Igel, C.2
  • 19
    • 84885023116 scopus 로고    scopus 로고
    • Training restricted boltzmann machines: An introduction
    • Fischer, A., Igel, C, 2014. Training restricted Boltzmann machines: an introduction. Pattern Recognit. 47 (1), 25-39.
    • (2014) Pattern Recognit. , vol.47 , Issue.1 , pp. 25-39
    • Fischer, A.1    Igel, C.2
  • 20
    • 78649934709 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences
    • Frank, A., Asuncion A., 2010. UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences, http://archive.ics.uci.edu/ml.
    • (2010) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2
  • 21
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Freund, Y., Schapire, R.E., 1997. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Sys. Sci. 55 (1), 119-139. (Pubitemid 127433398)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 23
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G.E., 2002. Training products of experts by minimizing contrastive divergence. Neural Comput. 14 (8), 1771-1800.
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 25
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • DOI 10.1126/science.1127647
    • Hinton, G.E., Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with neural networks. Science 313, 504-507. (Pubitemid 44148451)
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 26
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • DOI 10.1162/neco.2006.18.7.1527
    • Hinton, G.E., Osindero, S., Teh, Y.W., 2006. A fast learning algorithm for deep belief nets. Neural Comput. 18 (7), 1527-1554. (Pubitemid 44024729)
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 28
    • 0037410515 scopus 로고    scopus 로고
    • Double-bagging: Combining classifiers by bootstrap aggregation
    • DOI 10.1016/S0031-3203(02)00169-3, PII S0031320302001693
    • Hothorn, T., Lausen, B., 2003. Double-bagging: combining classifiers by bootstrap aggregation. Pattern Recognit. 36 (6), 1303-1309. (Pubitemid 36230219)
    • (2003) Pattern Recognition , vol.36 , Issue.6 , pp. 1303-1309
    • Hothorn, T.1    Lausen, B.2
  • 30
    • 84859473821 scopus 로고    scopus 로고
    • Learning algorithms for the classification restricted boltzmann machine
    • Larochelle, H., Mandel, M., Pascanu, R., Bengio, Y, 2012. Learning algorithms for the classification restricted Boltzmann machine. J. Mach. Learn. Res. 13, 643-669.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 643-669
    • Larochelle, H.1    Mandel, M.2    Pascanu, R.3    Bengio, Y.4
  • 31
    • 56449119811 scopus 로고    scopus 로고
    • ManifoldBoost: Stagewise function approximation for fully-, semi-, and un-supervised learning
    • Helsinki, Finland
    • Loeff, N., Forsyth, D., Ramachandran, D., 2008. ManifoldBoost: stagewise function approximation for fully-, semi-, and un-supervised learning. In: Proc. 25th Int. Conf. Mach. Learn., Helsinki, Finland, pp. 600-607.
    • (2008) Proc. 25th Int. Conf. Mach. Learn. , pp. 600-607
    • Loeff, N.1    Forsyth, D.2    Ramachandran, D.3
  • 32
    • 84857037836 scopus 로고    scopus 로고
    • Naive random subspace ensemble with linear classifiers for real-time classification of fMRI data
    • Plumpton, CO., Kuncheva, LI., Oosterhof, N.N., Jognston, S.J., 2012. Naive random subspace ensemble with linear classifiers for real-time classification of fMRI data. Pattern Recognit. 45 (5), 2101-2108.
    • (2012) Pattern Recognit. , vol.45 , Issue.5 , pp. 2101-2108
    • Plumpton, C.O.1    Kuncheva, L.I.2    Oosterhof, N.N.3    Jognston, S.J.4
  • 33
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar, R., 2006. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6 (3), 21-45.
    • (2006) IEEE Circuits Syst. Mag. , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 35
    • 80053033763 scopus 로고    scopus 로고
    • Ensembles of decision trees for imbalanced data
    • Sansone, C, Kittler, J., Roli, F. (Eds.) Springer, Berlin
    • Rodríguez, J.J., Díez-Pastor, J.F., Garcia-Osorio, C, 2011. Ensembles of decision trees for imbalanced data. In: Sansone, C, Kittler, J., Roli, F. (Eds.), MCS, Lecture Notes in Computer Science, Vol. 6713. Springer, Berlin, pp. 76-85.
    • (2011) MCS, Lecture Notes in Computer Science , vol.6713 , pp. 76-85
    • Rodríguez, J.J.1    Díez-Pastor, J.F.2    Garcia-Osorio, C.3
  • 36
    • 69449097857 scopus 로고    scopus 로고
    • Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography
    • Rokach, L, 2009. Taxonomy for characterizing ensemble methods in classification tasks: a review and annotated bibliography. Comput. Stat. Data Anal. 53 (12), 4046-4072.
    • (2009) Comput. Stat. Data Anal. , vol.53 , Issue.12 , pp. 4046-4072
    • Rokach, L.1
  • 37
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • Rokach, L, 2010. Ensemble-based classifiers. Artif. Intell. Rev. 33 (1-2), 1-39.
    • (2010) Artif. Intell. Rev. , vol.33 , Issue.1-2 , pp. 1-39
    • Rokach, L.1
  • 39
    • 84862704825 scopus 로고    scopus 로고
    • Tumor classification using eigengene-based classifier committee learning algorithm
    • Sun, Z.L., Zheng, C.H., Gao, Q.W., Zhang, J., Zhang, D.X., 2012. Tumor classification using eigengene-based classifier committee learning algorithm. IEEE Signal Process Lett. 19 (8), 455-458.
    • (2012) IEEE Signal Process Lett. , vol.19 , Issue.8 , pp. 455-458
    • Sun, Z.L.1    Zheng, C.H.2    Gao, Q.W.3    Zhang, J.4    Zhang, D.X.5
  • 40
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted boltzmann machines using approximations to the likelihood gradient
    • Helsinki, Finland
    • Tieleman, T., 2008. Training restricted Boltzmann machines using approximations to the likelihood gradient. In: Proc. 25th Int. Conf. Mach. Learn., Helsinki, Finland, pp. 1064-1071.
    • (2008) Proc. 25th Int. Conf. Mach. Learn. , pp. 1064-1071
    • Tieleman, T.1
  • 41
    • 70049098965 scopus 로고    scopus 로고
    • Using fast weights to improve persistent contrastive divergence
    • Montreal, Canada
    • Tieleman, T., Hinton, G.E., 2009. Using fast weights to improve persistent contrastive divergence. In: Proc. 26th Int. Conf. Mach. Learn., Montreal, Canada, pp. 1033-1040.
    • (2009) Proc. 26th Int. Conf. Mach. Learn. , pp. 1033-1040
    • Tieleman, T.1    Hinton, G.E.2
  • 42
    • 34548578042 scopus 로고    scopus 로고
    • Learning from batched data: Models combination vs data combination
    • Ting, K.M., Low, B.T., Witten, LH., 1999. Learning from batched data: models combination vs data combination. J. Knowl. Inf. Syst. 1 (1), 83-106.
    • (1999) J. Knowl. Inf. Syst. , vol.1 , Issue.1 , pp. 83-106
    • Ting, K.M.1    Low, B.T.2    Witten, L.H.3
  • 43
    • 84876885548 scopus 로고    scopus 로고
    • Mixed-variate restricted boltzmann machines
    • Tran, T., Phung, D.Q., Venkatesh, S., 2011. Mixed-variate restricted Boltzmann machines. J. Mach. Learn. Res. 20, 213-229.
    • (2011) J. Mach. Learn. Res. , vol.20 , pp. 213-229
    • Tran, T.1    Phung, D.Q.2    Venkatesh, S.3
  • 44
    • 84863048981 scopus 로고    scopus 로고
    • An application of classifier combination methods in hand gesture recognition
    • Wang, G.W., Zhang, C.X., Zhuang, J., 2012. An application of classifier combination methods in hand gesture recognition. Math. Prob. Eng. Article ID 346951, 17 pages.
    • (2012) Math. Prob. Eng. Article ID 346951 , pp. 17
    • Wang, G.W.1    Zhang, C.X.2    Zhuang, J.3
  • 45
    • 84870056483 scopus 로고    scopus 로고
    • Random projection ensemble learning with multiple empirical kernels
    • Wang, Z., Jie, W.B., Chen, S.C., Gao, D.Q., 2013. Random projection ensemble learning with multiple empirical kernels. Knowledge-Based Syst. 37, 388-393.
    • (2013) Knowledge-Based Syst. , vol.37 , pp. 388-393
    • Wang, Z.1    Jie, W.B.2    Chen, S.C.3    Gao, D.Q.4
  • 46
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique for combining boosting and wagging
    • Webb, G.I., 2000. Multiboosting: a technique for combining boosting and wagging. Mach. Learn. 40 (2), 159-196.
    • (2000) Mach. Learn. , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 47
    • 84899000641 scopus 로고    scopus 로고
    • Exponential family harmoniums with an application to information retrieval
    • Cambridge, MIT Press
    • Welling, M., Rosen-Zvi, M., Hinton, G.E., 2005. Exponential family harmoniums with an application to information retrieval. Advances in Neural Information Processing System, Vol. 17. Cambridge, MIT Press, pp. 1481-1488.
    • (2005) Advances in Neural Information Processing System , vol.17 , pp. 1481-1488
    • Welling, M.1    Rosen-Zvi, M.2    Hinton, G.E.3
  • 48
    • 70349305434 scopus 로고    scopus 로고
    • An empirical study of a linear regression combiner on multi-class data sets
    • Benediktsson, J.A., Kitller, J., Roli, F. (Eds.) Springer, Berlin
    • Zhang, C.X., Duin, R.P.W., 2009. An empirical study of a linear regression combiner on multi-class data sets. In: Benediktsson, J.A., Kitller, J., Roli, F. (Eds.), MCS, Lecture Notes in Computer Science, Vol. 5519. Springer, Berlin, pp. 478-487.
    • (2009) MCS, Lecture Notes in Computer Science , vol.5519 , pp. 478-487
    • Zhang, C.X.1    Duin, R.P.W.2
  • 49
    • 80052546565 scopus 로고    scopus 로고
    • An experimental study of one- and two-level classifier fusion for different sample sizes
    • Zhang, C.X., Duin, R.P.W., 2011. An experimental study of one- and two-level classifier fusion for different sample sizes. Pattern Recognit. Lett. 32 (14), 1756-1767.
    • (2011) Pattern Recognit. Lett. , vol.32 , Issue.14 , pp. 1756-1767
    • Zhang, C.X.1    Duin, R.P.W.2
  • 50
    • 73749083245 scopus 로고    scopus 로고
    • A variant of rotation forest for constructing ensemble classifiers
    • Zhang, C.X., Zhang, J.S., 2010. A variant of rotation forest for constructing ensemble classifiers. Pattern Anal. Appl. 13 (1), 59-77.
    • (2010) Pattern Anal. Appl. , vol.13 , Issue.1 , pp. 59-77
    • Zhang, C.X.1    Zhang, J.S.2
  • 52
    • 84872409305 scopus 로고    scopus 로고
    • Exploring unlabeled data to enhance ensemble diversity
    • Zhang, M.L., Zhou, Z.H., 2013. Exploring unlabeled data to enhance ensemble diversity. Data Min. Knowl. Discovery 26 (1), 98-129.
    • (2013) Data Min. Knowl. Discovery , vol.26 , Issue.1 , pp. 98-129
    • Zhang, M.L.1    Zhou, Z.H.2
  • 54
    • 72249084689 scopus 로고    scopus 로고
    • A hybrid approach for efficient ensembles
    • Zhu, D., 2010. A hybrid approach for efficient ensembles. Decis. Support Syst. 48 (3), 480-487.
    • (2010) Decis. Support Syst. , vol.48 , Issue.3 , pp. 480-487
    • Zhu, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.