-
2
-
-
0033570831
-
Combined 5 × 2 cv F test for comparing supervised classification learning algorithms
-
E. Alpaydin. Combined 5 × 2 cv F test for comparing supervised classification learning algorithms. Neural Computation, 11:1885-1892, 1999.
-
(1999)
Neural Computation
, vol.11
, pp. 1885-1892
-
-
Alpaydin, E.1
-
3
-
-
0003648234
-
An Introduction to Multivariate Statistical Analysis
-
John Wiley & Sons, New York, 2nd edition
-
T. W. Anderson. An Introduction to Multivariate Statistical Analysis. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York, 2nd edition, 1984.
-
(1984)
Wiley Series in Probability and Mathematical Statistics
-
-
Anderson, T.W.1
-
4
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
July/August
-
E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36(1/2):105-142, July/August 1999.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 105-142
-
-
Bauer, E.1
Kohavi, R.2
-
5
-
-
0030196364
-
Stacked regressions
-
Breiman. Stacked regressions. Machine Learning, 24(1):49-64, 1996a.
-
(1996)
Machine Learning
, vol.24
, Issue.1
, pp. 49-64
-
-
Breiman1
-
6
-
-
0030211964
-
Bagging predictors
-
Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996b.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman1
-
7
-
-
0003619255
-
Bias, variance, and arcing classifiers
-
Technical Report 460, Department of Statistics, University of California, Berkeley, CA
-
Breiman. Bias, variance, and arcing classifiers. Technical Report 460, Department of Statistics, University of California, Berkeley, CA, 1996c.
-
(1996)
-
-
Breiman1
-
8
-
-
0346786584
-
Arcing classifiers
-
Breiman. Arcing classifiers. Annals of Statistics, 26:801-824, 1998.
-
(1998)
Annals of Statistics
, vol.26
, pp. 801-824
-
-
Breiman1
-
9
-
-
0000275022
-
Prediction games and arcing algorithms
-
Breiman. Prediction games and arcing algorithms. Neural Computation, 11(7):1493-1517, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.7
, pp. 1493-1517
-
-
Breiman1
-
11
-
-
10044235999
-
LIBSVM: A Library for Support Vector Machines
-
available at
-
Ch-Ch. Chang and Ch-J. Lin. LIBSVM: A Library for Support Vector Machines, 2001. Software available at http://www.csie.ntu.edu.tw/cjlin/ libsvm.
-
(2001)
Software
-
-
Chang, C.-C.1
Lin, C.-J.2
-
12
-
-
0000291808
-
Methods of combining multiple classifiers with different features and their applications to text-independent speaker identification
-
K. Chen, L. Wang, and H. Chi. Methods of combining multiple classifiers with different features and their applications to text-independent speaker identification. Journal of Pattern Recognition and Artificial Intelligence, 11 (3) :417-445, 1997.
-
(1997)
Journal of Pattern Recognition and Artificial Intelligence
, vol.11
, Issue.3
, pp. 417-445
-
-
Chen, K.1
Wang, L.2
Chi, H.3
-
13
-
-
0001920992
-
Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks
-
K. Cherkauer. Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks. In Working Notes of the AAAI Workshop on Integrating Multiple Learned Models, pages 15-21, 1996.
-
(1996)
Working Notes of the AAAI Workshop on Integrating Multiple Learned Models
, pp. 15-21
-
-
Cherkauer, K.1
-
15
-
-
84974722422
-
Diversity versus quality in classification ensembles based on feature selection
-
R. L. de Mantarás and E. Plaza, editors, Barcelona, Spain, Springer
-
P. Cunningham and J. Carney. Diversity versus quality in classification ensembles based on feature selection. In R. L. de Mantarás and E. Plaza, editors, Proceedings of the Eleventh Conference on Machine Learning ECML 2000, pages 109-116, Barcelona, Spain, 2000. Springer.
-
(2000)
Proceedings of the Eleventh Conference on Machine Learning ECML 2000
, pp. 109-116
-
-
Cunningham, P.1
Carney, J.2
-
16
-
-
0004224632
-
Bayesian Methods for Nonlinear Classification and Regression
-
John Wiley & Sons, West Sussex, England
-
G. T. Denison, C. C. Holmes, B. K. Mallick, and A. F. M. Smith. Bayesian Methods for Nonlinear Classification and Regression. Wiley Series in Probability and Statistics. John Wiley & Sons, West Sussex, England, 2002.
-
(2002)
Wiley Series in Probability and Statistics
-
-
Denison, G.T.1
Holmes, C.C.2
Mallick, B.K.3
Smith, A.F.M.4
-
17
-
-
84945302667
-
A method to boost support vector machines
-
M-S. Chen, P. S. Yu, and B. Liu, editors, Taipei, Taiwan, Springer-Verlag
-
Diao, K. Hu, Y. Lu, and Ch. Shi. A method to boost support vector machines. In M-S. Chen, P. S. Yu, and B. Liu, editors, Proceedings of the Sixth Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 463-468, Taipei, Taiwan, 2002. Springer-Verlag.
-
(2002)
Proceedings of the Sixth Pacific-Asia Conference on Knowledge Discovery and Data Mining
, pp. 463-468
-
-
Diao, K.H.1
Lu, Y.2
Shi, C.3
-
18
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
T. G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40:139-157, 2000a.
-
(2000)
Machine Learning
, vol.40
, pp. 139-157
-
-
Dietterich, T.G.1
-
21
-
-
0000259511
-
Approximate statistical tests for comparing supervised classification learning algorithms
-
T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7):1895-1923, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.7
, pp. 1895-1923
-
-
Dietterich, T.G.1
-
23
-
-
12144288329
-
Is combining classifiers with stacking better than selecting the best one?
-
S. Dzeroski and B. Zenko. Is combining classifiers with stacking better than selecting the best one? Machine Learning, 54:255-273, 2004.
-
(2004)
Machine Learning
, vol.54
, pp. 255-273
-
-
Dzeroski, S.1
Zenko, B.2
-
25
-
-
0141921552
-
Online ensemble learning: An empirical study
-
A. Fern and R. Givan. Online ensemble learning: An empirical study. Machine Learning, 53: 71-109, 2003.
-
(2003)
Machine Learning
, vol.53
, pp. 71-109
-
-
Fern, A.1
Givan, R.2
-
27
-
-
0034164230
-
Additice logistic regression: A statistical view of boosting
-
J. Friedman, T. Hastie, and R. Tibshirani. Additice logistic regression: A statistical view of boosting. Annals of Statistics, 28(2):337-407, 2000.
-
(2000)
Annals of Statistics
, vol.28
, Issue.2
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
28
-
-
21044454599
-
Cooperative coevolution of artificial neural network ensembles for pattern classification
-
June
-
N. García-Pedrajas, C. Hervás-Martínez, and D. Ortiz-Boyer. Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Transactions on Evolutionary Computation, 9(3):271-302, June 2005.
-
(2005)
IEEE Transactions on Evolutionary Computation
, vol.9
, Issue.3
, pp. 271-302
-
-
García-Pedrajas, N.1
Hervás-Martínez, C.2
Ortiz-Boyer, D.3
-
31
-
-
78149349523
-
Comparing pure parallel ensemble creation techniques against bagging
-
Melbourne, FL, USA
-
Hall, K. Bowyer, R. Banfield, D. Bhadoria, W. Kegelmeyer, and S. Eschrich. Comparing pure parallel ensemble creation techniques against bagging. In Third IEEE International Conference on Data Mining, pages 533-536, Melbourne, FL, USA, 2003.
-
(2003)
Third IEEE International Conference on Data Mining
, pp. 533-536
-
-
Hall1
Bowyer, K.2
Banfield, R.3
Bhadoria, D.4
Kegelmeyer, W.5
Eschrich, S.6
-
36
-
-
10044232174
-
Pattern classification using support vector machine ensembles
-
H-Ch. Kim, S. Pang, H-M. Je, D. Kim, and S. Y. Bang. Pattern classification using support vector machine ensembles. In Proceedings of the 16th International Conference on Pattern Recognition (ICPR'02), volume 2, pages 160-163, 2002.
-
(2002)
Proceedings of the 16th International Conference on Pattern Recognition (ICPR'02)
, vol.2
, pp. 160-163
-
-
Kim, H.-C.1
Pang, S.2
Je, H.-M.3
Kim, D.4
Bang, S.Y.5
-
38
-
-
0003763626
-
-
PhD thesis, Department of Computer Science, Stanford University, Stanford, USA
-
R. Kohavi. Wrappers for Performance Enhancement and Oblivious Decision Graphs. PhD thesis, Department of Computer Science, Stanford University, Stanford, USA, 1995.
-
(1995)
Wrappers for Performance Enhancement and Oblivious Decision Graphs
-
-
Kohavi, R.1
-
39
-
-
0342748795
-
Option decision trees with majority voting
-
San Francisco, CA, USA, Morgan Kaufman
-
R. Kohavi and C. Kunz. Option decision trees with majority voting. In Proceedings of the Fourteenth International Conference on Machine Learning, pages 161-169, San Francisco, CA, USA, 1997. Morgan Kaufman.
-
(1997)
Proceedings of the Fourteenth International Conference on Machine Learning
, pp. 161-169
-
-
Kohavi, R.1
Kunz, C.2
-
40
-
-
0003263256
-
Self-Organizing Maps
-
of, Springer, Berlin, third edition
-
T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information Sciences. Springer, Berlin, third edition, 2001.
-
(2001)
Springer Series in Information Sciences
, vol.30
-
-
Kohonen, T.1
-
41
-
-
0000670848
-
Back propagation is sensitive to initial conditions
-
Richard P. Lippmann, John E. Moody, and David S. Touretzky, editors, Morgan Kaufmann Publishers, Inc
-
J. F. Kolen and J. B. Pollack. Back propagation is sensitive to initial conditions. In Richard P. Lippmann, John E. Moody, and David S. Touretzky, editors, Advances in Neural Information Processing Systems, volume 3, pages 860-867. Morgan Kaufmann Publishers, Inc., 1991.
-
(1991)
Advances in Neural Information Processing Systems
, vol.3
, pp. 860-867
-
-
Kolen, J.F.1
Pollack, J.B.2
-
42
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
May
-
Kuncheva and C.J. Whitaker. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51(2):181-207, May 2003.
-
(2003)
Machine Learning
, vol.51
, Issue.2
, pp. 181-207
-
-
Kuncheva1
Whitaker, C.J.2
-
43
-
-
0348151971
-
Combining classifiers: Soft computing solutions
-
S. K. Pal and A. Pal, editors, World Scientific
-
I. Kuncheva. Combining classifiers: Soft computing solutions. In S. K. Pal and A. Pal, editors, Pattern Recognition: From Classical to Modern Approaches, pages 427-451. World Scientific, 2001.
-
(2001)
Pattern Recognition: From Classical to Modern Approaches
, pp. 427-451
-
-
Kuncheva, I.1
-
44
-
-
21844454573
-
Error bounds for aggressive and conservative adaboost
-
Proceedings of MCS, number in, Guilford, UK
-
I. Kuncheva. Error bounds for aggressive and conservative adaboost. In Proceedings of MCS, number 2709 in Lecture Notes in Computer Science, pages 25-34, Guilford, UK, 2003.
-
(2003)
Lecture Notes in Computer Science
, vol.2709
, pp. 25-34
-
-
Kuncheva, I.1
-
45
-
-
34249873596
-
Efficient backprop
-
G. B. Orr and K-R. Müller, editors, Springer-Verlag
-
Y. LeCun, L. Bottou, G. B. Orr, and K-R. Müller. Efficient backprop. In G. B. Orr and K-R. Müller, editors, Neural Networks: Tricks of the Trade, pages 9-50. Springer-Verlag, 1998.
-
(1998)
Neural Networks: Tricks of the Trade
, pp. 9-50
-
-
LeCun, Y.1
Bottou, L.2
Orr, G.B.3
Müller, K.-R.4
-
46
-
-
0032822143
-
A comparative study of neural networks based feature extraction paradigms
-
B. Lerner, H. Guterman, M. Aladjem, and I. Dinstein. A comparative study of neural networks based feature extraction paradigms. Pattern Recognition Letters, 20(1):7-14, 1999.
-
(1999)
Pattern Recognition Letters
, vol.20
, Issue.1
, pp. 7-14
-
-
Lerner, B.1
Guterman, H.2
Aladjem, M.3
Dinstein, I.4
-
47
-
-
0034315099
-
Evolutionary ensembles with negative correlation learning
-
November
-
Y. Liu, X. Yao, and T. Higuchi. Evolutionary ensembles with negative correlation learning. IEEE Transactions on Evolutionary Computation, 4(4):380-387, November 2000.
-
(2000)
IEEE Transactions on Evolutionary Computation
, vol.4
, Issue.4
, pp. 380-387
-
-
Liu, Y.1
Yao, X.2
Higuchi, T.3
-
48
-
-
0002289220
-
Pruning adaptive boosting
-
Douglas H. Fisher, editor, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc
-
D. Margineantu and T. G. Dietterich. Pruning adaptive boosting. In Douglas H. Fisher, editor, Proceedings of the Fourteenth International Conference on Machine Learning, pages 211-218, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.
-
(1997)
Proceedings of the Fourteenth International Conference on Machine Learning
, pp. 211-218
-
-
Margineantu, D.1
Dietterich, T.G.2
-
49
-
-
0033870982
-
Improved generalization through explicit optimization of margins
-
Mason, P. L. Bartlett, and J. Baxter. Improved generalization through explicit optimization of margins. Machine Learning, 38:243-255, 2000.
-
(2000)
Machine Learning
, vol.38
, pp. 243-255
-
-
Mason, P.1
Bartlett, L.2
Baxter, J.3
-
50
-
-
0032661927
-
Using correspondence analysis to combine classifiers
-
July
-
J. Merz. Using correspondence analysis to combine classifiers. Machine Learning, 36(1):33-58, July 1999.
-
(1999)
Machine Learning
, vol.36
, Issue.1
, pp. 33-58
-
-
Merz, J.1
-
52
-
-
0032596573
-
Feature selection for ensembles
-
Orlando, FL, USA, American Association for Artificial Intelligence
-
W. Opitz. Feature selection for ensembles. In Proceedings of the Sixteenth National Conference on Artificial Intelligence, pages 379-384, Orlando, FL, USA, 1999. American Association for Artificial Intelligence.
-
(1999)
Proceedings of the Sixteenth National Conference on Artificial Intelligence
, pp. 379-384
-
-
Opitz, W.1
-
55
-
-
33750095186
-
Rotation forest: A new classifier ensemble method
-
Oct
-
J. J. Rodríguez, L. I. Kuncheva, and C. J. Alonso. Rotation forest: A new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):1619-1630, Oct 2006.
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.10
, pp. 1619-1630
-
-
Rodríguez, J.J.1
Kuncheva, L.I.2
Alonso, C.J.3
-
57
-
-
0000646059
-
Learning internal representations by error propagation
-
D. Rumelhart and J. McClelland, editors, MIT Press, Cambridge, MA
-
Rumelhart, G. Hinton, and R. J. Williams. Learning internal representations by error propagation. In D. Rumelhart and J. McClelland, editors, Parallel Distributed Processing, pages 318-362. MIT Press, Cambridge, MA, 1986.
-
(1986)
Parallel Distributed Processing
, pp. 318-362
-
-
Rumelhart1
Hinton, G.2
Williams, R.J.3
-
58
-
-
0033905095
-
Boostexter: A boosting-based system for text categorization
-
R. E. Schapire and Y. Singer. Boostexter: A boosting-based system for text categorization. Machine Learning, 39:135-168, 2000.
-
(2000)
Machine Learning
, vol.39
, pp. 135-168
-
-
Schapire, R.E.1
Singer, Y.2
-
59
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37:297-336, 1999.
-
(1999)
Machine Learning
, vol.37
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
60
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
R. E. Schapire, Y. Freund, P. L. Bartlett, and W. S. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5):1651-1686, 1998.
-
(1998)
Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.L.3
Lee, W.S.4
-
61
-
-
0141830857
-
Stopping criterion for boosting-based data reduction techniques: From binary to multiclass problems
-
Sebban, R. Nock, and S. Lallich. Stopping criterion for boosting-based data reduction techniques: from binary to multiclass problems. Journal of Machine Learning Research, 3:863-885, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 863-885
-
-
Sebban1
Nock, R.2
Lallich, S.3
-
62
-
-
84957007471
-
Bagging and the random subspace method for redundant feature spaces
-
J. Kittler and R. Poli, editors, Cambridge, UK
-
Skurichina and R. P. W. Duin. Bagging and the random subspace method for redundant feature spaces. In J. Kittler and R. Poli, editors, Proceedings of the Second International Workshop on Multiple Classifier Systems MCS 2001, pages 1-10, Cambridge, UK, 2001.
-
(2001)
Proceedings of the Second International Workshop on Multiple Classifier Systems MCS 2001
, pp. 1-10
-
-
Skurichina1
Duin, R.P.W.2
-
63
-
-
0042622207
-
-
A. Tsymbal, P. Cunningham, M. Pechinizkiy, and P. Puuronen. Search strategies for ensemble feature selection in medical diagnosis. In M. Krol, S. Mitra, and D. J. Lee, editors, Proceedings of the Sixteenth IEEE Symposium on Computer-Bases Medical Systems CBMS'2003, pages 124-129, The Mount Sinai School of Medicine, New York, USA, 2003. IEEE CS Press.
-
A. Tsymbal, P. Cunningham, M. Pechinizkiy, and P. Puuronen. Search strategies for ensemble feature selection in medical diagnosis. In M. Krol, S. Mitra, and D. J. Lee, editors, Proceedings of the Sixteenth IEEE Symposium on Computer-Bases Medical Systems CBMS'2003, pages 124-129, The Mount Sinai School of Medicine, New York, USA, 2003. IEEE CS Press.
-
-
-
-
64
-
-
0030365938
-
Error correlation and error reduction in ensemble classifier
-
K. Turner and J. Ghosh. Error correlation and error reduction in ensemble classifier. Connection Science, 8(3-4):385-404, 1996.
-
(1996)
Connection Science
, vol.8
, Issue.3-4
, pp. 385-404
-
-
Turner, K.1
Ghosh, J.2
-
65
-
-
0035425555
-
Ensemble of independent factor analyzers with application to natural image analysis
-
August
-
A. Utsugi. Ensemble of independent factor analyzers with application to natural image analysis. Neural Processing Letters, 14(1):49-60, August 2001.
-
(2001)
Neural Processing Letters
, vol.14
, Issue.1
, pp. 49-60
-
-
Utsugi, A.1
-
66
-
-
0034247206
-
Multiboosting: A technique for combining boosting and wagging
-
August
-
G. I. Webb. Multiboosting: A technique for combining boosting and wagging. Machine Learning, 40(2):159-196, August 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 159-196
-
-
Webb, G.I.1
-
67
-
-
33745137045
-
Face detection using mixtures of linear subspaces
-
IEEE Computer Society Washington, DC, USA
-
M-H. Yand, N. Ahuja, and D. Kriegman. Face detection using mixtures of linear subspaces. In Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pages 70-77. IEEE Computer Society Washington, DC, USA, 2000.
-
(2000)
Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition
, pp. 70-77
-
-
Yand, M.-H.1
Ahuja, N.2
Kriegman, D.3
-
68
-
-
84948152666
-
Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error
-
L. de Raedt and P. Flach, editors, 12th European Conference on Machine Learning ECML 2001, Springer-Verlag
-
G. Zenobi and P. Cunningham. Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error. In L. de Raedt and P. Flach, editors, 12th European Conference on Machine Learning (ECML 2001), LNAI 2167, pages 576-587. Springer-Verlag, 2001.
-
(2001)
LNAI
, vol.2167
, pp. 576-587
-
-
Zenobi, G.1
Cunningham, P.2
-
69
-
-
26444493144
-
Boosting with early stooping: Convergence and consistency
-
T. Zhang and B. Yu. Boosting with early stooping: Convergence and consistency. The Annals of Statistics, 33(4):1538-1579, 2005.
-
(2005)
The Annals of Statistics
, vol.33
, Issue.4
, pp. 1538-1579
-
-
Zhang, T.1
Yu, B.2
-
70
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
May
-
Z-H. Zhou, J. Wu, and W. Tang. Ensembling neural networks: Many could be better than all. Artificial Intelligence, 137(1-2):239-253, May 2002.
-
(2002)
Artificial Intelligence
, vol.137
, Issue.1-2
, pp. 239-253
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
|