-
4
-
-
85162060750
-
Regularized boost for semi-supervised learning
-
Chen, K., & Wang, S. (2008). Regularized boost for semi-supervised learning. NIPS 20 (pp. 281-288).
-
(2008)
NIPS 20
, pp. 281-288
-
-
Chen, K.1
Wang, S.2
-
5
-
-
0037948870
-
Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data
-
Donoho, D. L., & Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. USA, 100, 5591-5596.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 5591-5596
-
-
Donoho, D.L.1
Grimes, C.2
-
6
-
-
0001070566
-
Numerical procedures for surface fitting of scattered data by radial functions
-
Dyn, N., Levin, D., & Rippa, S. (1986). Numerical procedures for surface fitting of scattered data by radial functions. SIAM Journal on Scientific and Statistical Computing, 7, 639-659.
-
(1986)
SIAM Journal on Scientific and Statistical Computing
, vol.7
, pp. 639-659
-
-
Dyn, N.1
Levin, D.2
Rippa, S.3
-
7
-
-
0003591748
-
Greedy function approximation: A gradient boosting machine
-
Dept. of Statistics, Stanford University
-
Friedman, J. (1999). Greedy function approximation: a gradient boosting machine (Technical Report). Dept. of Statistics, Stanford University.
-
(1999)
Technical Report
-
-
Friedman, J.1
-
8
-
-
1942483137
-
Transductive inference for text classification using support vector machines
-
Joachims, T. (1999). Transductive inference for text classification using support vector machines. ICML (pp. 200-209).
-
(1999)
ICML
, pp. 200-209
-
-
Joachims, T.1
-
9
-
-
57149145568
-
Boosting on manifolds: Adaptive regularization of base classifiers
-
Kégl, B., & Wang, L. (2005). Boosting on manifolds: Adaptive regularization of base classifiers. NIPS 17 (pp. 665-672).
-
(2005)
NIPS 17
, pp. 665-672
-
-
Kégl, B.1
Wang, L.2
-
10
-
-
85045788563
-
Statistical analysis of semi-supervised regression
-
Lafferty, J., & Wasserman, L. (2007). Statistical analysis of semi-supervised regression. NIPS 20 (pp. 801-808).
-
(2007)
NIPS 20
, pp. 801-808
-
-
Lafferty, J.1
Wasserman, L.2
-
11
-
-
56449092018
-
-
M. Belkin, I. M., & Niyogi, P. (2004). Regression and regularization on large graphs. COLT (pp. 824-831).
-
M. Belkin, I. M., & Niyogi, P. (2004). Regression and regularization on large graphs. COLT (pp. 824-831).
-
-
-
-
12
-
-
84898978212
-
Boosting algorithms as gradient descent
-
Mason, L., Baxter, J., Bartlett, P., & Frean, M. (2000). Boosting algorithms as gradient descent. NIPS 12 (pp. 512-518).
-
(2000)
NIPS 12
, pp. 512-518
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.3
Frean, M.4
-
13
-
-
56449117244
-
Manifold regularization and semi-supervised learning: Some theoretical analyses
-
University of Chicago. Technical Report TR-2008-01, Computer Science Dept
-
Niyogi, P. (2008). Manifold regularization and semi-supervised learning: Some theoretical analyses (Technical Report). University of Chicago. Technical Report TR-2008-01, Computer Science Dept.
-
(2008)
Technical Report
-
-
Niyogi, P.1
-
14
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Roweis, S., & Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323-2326.
-
(2000)
Science
, vol.290
, pp. 2323-2326
-
-
Roweis, S.1
Saul, L.2
-
15
-
-
33750709343
-
The geometric basis of semi-supervised learning
-
Chapelle, Schoelkopf and Zien Eds, MIT Press
-
Sindhwani, V., Belkin, M., & Niyogi, P. (2006). The geometric basis of semi-supervised learning. In Chapelle, Schoelkopf and Zien (Eds.), Semi-supervised learning. MIT Press.
-
(2006)
Semi-supervised learning
-
-
Sindhwani, V.1
Belkin, M.2
Niyogi, P.3
-
16
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319-2323.
-
(2000)
Science
, vol.290
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
de Silva, V.2
Langford, J.C.3
-
17
-
-
33745456231
-
Semi-supervised learning literature review
-
University of Wisconsin
-
Zhu, X. (2006). Semi-supervised learning literature review (Technical Report). University of Wisconsin.
-
(2006)
Technical Report
-
-
Zhu, X.1
-
18
-
-
1942484430
-
Semi-supervised learning using gaussian fields and harmonic functions
-
Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-supervised learning using gaussian fields and harmonic functions. ICML (pp. 912-919).
-
(2003)
ICML
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
|