메뉴 건너뛰기




Volumn , Issue , 2008, Pages 600-607

ManifoldBoost: Stagewise function approximation for fully-, semi-and un-supervised learning

Author keywords

[No Author keywords available]

Indexed keywords

FEEDFORWARD NEURAL NETWORKS; LEARNING SYSTEMS; PROBABILITY DENSITY FUNCTION; RADIAL BASIS FUNCTION NETWORKS; ROBOT LEARNING; SUPERVISED LEARNING; FUNCTIONS;

EID: 56449119811     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (14)

References (18)
  • 4
    • 85162060750 scopus 로고    scopus 로고
    • Regularized boost for semi-supervised learning
    • Chen, K., & Wang, S. (2008). Regularized boost for semi-supervised learning. NIPS 20 (pp. 281-288).
    • (2008) NIPS 20 , pp. 281-288
    • Chen, K.1    Wang, S.2
  • 5
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data
    • Donoho, D. L., & Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. USA, 100, 5591-5596.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 5591-5596
    • Donoho, D.L.1    Grimes, C.2
  • 7
    • 0003591748 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Dept. of Statistics, Stanford University
    • Friedman, J. (1999). Greedy function approximation: a gradient boosting machine (Technical Report). Dept. of Statistics, Stanford University.
    • (1999) Technical Report
    • Friedman, J.1
  • 8
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Joachims, T. (1999). Transductive inference for text classification using support vector machines. ICML (pp. 200-209).
    • (1999) ICML , pp. 200-209
    • Joachims, T.1
  • 9
    • 57149145568 scopus 로고    scopus 로고
    • Boosting on manifolds: Adaptive regularization of base classifiers
    • Kégl, B., & Wang, L. (2005). Boosting on manifolds: Adaptive regularization of base classifiers. NIPS 17 (pp. 665-672).
    • (2005) NIPS 17 , pp. 665-672
    • Kégl, B.1    Wang, L.2
  • 10
    • 85045788563 scopus 로고    scopus 로고
    • Statistical analysis of semi-supervised regression
    • Lafferty, J., & Wasserman, L. (2007). Statistical analysis of semi-supervised regression. NIPS 20 (pp. 801-808).
    • (2007) NIPS 20 , pp. 801-808
    • Lafferty, J.1    Wasserman, L.2
  • 11
    • 56449092018 scopus 로고    scopus 로고
    • M. Belkin, I. M., & Niyogi, P. (2004). Regression and regularization on large graphs. COLT (pp. 824-831).
    • M. Belkin, I. M., & Niyogi, P. (2004). Regression and regularization on large graphs. COLT (pp. 824-831).
  • 12
    • 84898978212 scopus 로고    scopus 로고
    • Boosting algorithms as gradient descent
    • Mason, L., Baxter, J., Bartlett, P., & Frean, M. (2000). Boosting algorithms as gradient descent. NIPS 12 (pp. 512-518).
    • (2000) NIPS 12 , pp. 512-518
    • Mason, L.1    Baxter, J.2    Bartlett, P.3    Frean, M.4
  • 13
    • 56449117244 scopus 로고    scopus 로고
    • Manifold regularization and semi-supervised learning: Some theoretical analyses
    • University of Chicago. Technical Report TR-2008-01, Computer Science Dept
    • Niyogi, P. (2008). Manifold regularization and semi-supervised learning: Some theoretical analyses (Technical Report). University of Chicago. Technical Report TR-2008-01, Computer Science Dept.
    • (2008) Technical Report
    • Niyogi, P.1
  • 14
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S., & Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 15
    • 33750709343 scopus 로고    scopus 로고
    • The geometric basis of semi-supervised learning
    • Chapelle, Schoelkopf and Zien Eds, MIT Press
    • Sindhwani, V., Belkin, M., & Niyogi, P. (2006). The geometric basis of semi-supervised learning. In Chapelle, Schoelkopf and Zien (Eds.), Semi-supervised learning. MIT Press.
    • (2006) Semi-supervised learning
    • Sindhwani, V.1    Belkin, M.2    Niyogi, P.3
  • 16
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 17
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature review
    • University of Wisconsin
    • Zhu, X. (2006). Semi-supervised learning literature review (Technical Report). University of Wisconsin.
    • (2006) Technical Report
    • Zhu, X.1
  • 18
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-supervised learning using gaussian fields and harmonic functions. ICML (pp. 912-919).
    • (2003) ICML , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.