-
1
-
-
32044473249
-
Using diversity of errors for selecting members of a committee classifier
-
DOI 10.1016/j.patcog.2005.08.017, PII S0031320305004309, Graph-Based Representations
-
M.Aksela and J. Laaksonen, Using diversity of errors for selectingmembers of a committee classifier, Pattern Recognition 39 (2006), 608-623. (Pubitemid 43199459)
-
(2006)
Pattern Recognition
, vol.39
, Issue.4
, pp. 608-623
-
-
Aksela, M.1
Laaksonen, J.2
-
2
-
-
36948999941
-
-
Retrieved from Irvine, CA: University of California, School of Information and Computer Science
-
A. Asuncion and D.J. Newman, UCI Machine Learning Repository. Retrieved from [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, School of Information and Computer Science, 2007.
-
(2007)
UCI Machine Learning Repository
-
-
Asuncion, A.1
Newman, D.J.2
-
3
-
-
33947231519
-
A comparison of decision tree ensemble creation techniques
-
DOI 10.1109/TPAMI.2007.250609
-
R.E. Banfield, L.O. Hall, K.W. Bowyer, D. Bhadoria and W.P. Kegelmeyer, A comparison of decision tree ensemble creation techniques, IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1) (2007), 173-180. (Pubitemid 46415955)
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.1
, pp. 173-180
-
-
Banfield, R.E.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
6
-
-
71449121278
-
-
Retrieved from. University of Waikato, New Zealand, 18 December
-
R.R. Bouckaert, E. Frank, M. Hall, R. Kirkby, P. Reutemann, A. Seewald et al., WEKA Manual for Version 3-6-0, Retrieved from http://www.cs.waikato.ac.nz/ ~ml/weka/index.html. University of Waikato, New Zealand, 18 December 2008.
-
(2008)
WEKA Manual for Version 3-6-0
-
-
Bouckaert, R.R.1
Frank, E.2
Hall, M.3
Kirkby, R.4
Reutemann, P.5
Seewald, A.6
-
7
-
-
0033220805
-
On global, local, mixed and neighborhood kernels for support vector machines
-
DOI 10.1016/S0167-8655(99)00086-0
-
V.L. Brailovsky, O. Barzilay and R. Shahave, On global, local, mixed and neighborhood kernels for support vector machines, Pattern Recognition Letters 20 (1999), 1183-1190. (Pubitemid 32261896)
-
(1999)
Pattern Recognition Letters
, vol.20
, Issue.11-13
, pp. 1183-1190
-
-
Brailovsky, V.L.1
Barzilay, O.2
Shahave, R.3
-
8
-
-
0030211964
-
Bagging predictors
-
L. Breiman, Bagging predictors, Machine Learning 24(2) (1996), 123-140. (Pubitemid 126724382)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
9
-
-
0035478854
-
Random forests
-
DOI 10.1023/A:1010933404324
-
L. Breiman, Random forests, Machine Learning 45 (2001), 5-32. (Pubitemid 32933532)
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
10
-
-
33845506212
-
Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles
-
DOI 10.1016/j.patrec.2006.09.001, PII S0167865506002339
-
A.M. Canuto, M.C. Abreu, L.M. Oliveira, J.C. Xavier and A.M. Santos, Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles, Pattern Recognition Letters 28 (2007), 472-486. (Pubitemid 44918135)
-
(2007)
Pattern Recognition Letters
, vol.28
, Issue.4
, pp. 472-486
-
-
Canuto, A.M.P.1
Abreu, M.C.C.2
De Melo Oliveira, L.3
Xavier Jr., J.C.4
Santos, A.D.M.5
-
11
-
-
14344255621
-
Ensemble selection from libraries of models
-
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
-
R. Caruana, A. Niculescu-Mizil, G. Crew and A. Ksikes, Ensemble selection from libraries of models, 21st International Conference on Machine Learning (2004), 137-144. (Pubitemid 40290801)
-
(2004)
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
, pp. 137-144
-
-
Caruana, R.1
Niculescu-Mizil, A.2
Crew, G.3
Ksikes, A.4
-
13
-
-
32544431928
-
Evolving hybrid ensembles of learning machines for better generalisation
-
DOI 10.1016/j.neucom.2005.12.014, PII S0925231205003188
-
A. Chandra and X. Yao, Evolving hybrid ensembles of learning machines for better generalisation, Neurocomputing 69 (2006), 686-700. (Pubitemid 43230374)
-
(2006)
Neurocomputing
, vol.69
, Issue.7-9 SPEC. ISS.
, pp. 686-700
-
-
Chandra, A.1
Yao, X.2
-
14
-
-
0003954942
-
Diversity versus quality in classification ensembles based on feature selection
-
Trinity College, Department of Computer Science, Dublin
-
P. Cunningham and J. Carney, Diversity versus quality in classification ensembles based on feature selection. Technical Report TCD-CS-2000-02, Trinity College, Department of Computer Science, Dublin, 2000.
-
(2000)
Technical Report TCD-CS-2000-02
-
-
Cunningham, P.1
Carney, J.2
-
15
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demsar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning 7 (2006), 1-30. (Pubitemid 43022939)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
18
-
-
0001837148
-
A comparison of alternative tests of significance for the problem of m rankings
-
M. Friedman, A comparison of alternative tests of significance for the problem of m rankings, Annals of Mathematical Statistics 11 (1940), 56-92.
-
(1940)
Annals of Mathematical Statistics
, vol.11
, pp. 56-92
-
-
Friedman, M.1
-
19
-
-
0001750957
-
Approximations of the critical region of the Friedman statistic
-
R.L. Iman and J.M. Davenport, Approximations of the critical region of the Friedman statistic, Communications in Statistics (1980), 571-595.
-
(1980)
Communications in Statistics
, pp. 571-595
-
-
Iman, R.L.1
Davenport, J.M.2
-
20
-
-
0037598692
-
Local versus global models for classification problems: Fitting models where it matters
-
DOI 10.1198/0003130031423
-
D.J. Hand and V. Vinciotti, Local versus global models for classification problems: Fitting models where it matters, The American Statistician 57(2) (2003), 124-131. (Pubitemid 36594034)
-
(2003)
American Statistician
, vol.57
, Issue.2
, pp. 124-131
-
-
Hand, D.J.1
Vinciotti, V.2
-
22
-
-
0011187879
-
Multiple classifier combination: Lessons and the next steps
-
A. Kandel and H. Bunke, eds
-
T.K. Ho, Multiple classifier combination: Lessons and the next steps, in: Hybrid Methods in Pattern Recognition, A. Kandel and H. Bunke, eds, 2002, pp. 171-198.
-
(2002)
Hybrid Methods in Pattern Recognition
, pp. 171-198
-
-
Ho, T.K.1
-
23
-
-
79956326532
-
Generating diverse ensembles to counter the problem of class imbalance, advances in knowledge discovery and data mining
-
T.R. Hoens and N.V. Chawla, Generating Diverse Ensembles to Counter the Problem of Class Imbalance, Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science (2010)(6119), 488-499.
-
(2010)
Lecture Notes in Computer Science
, Issue.6119
, pp. 488-499
-
-
Hoens, T.R.1
Chawla, N.V.2
-
24
-
-
0001750957
-
Approximations of the critical region of the Friedman statistic
-
R.L. Iman and J.M. Davenport, Approximations of the critical region of the Friedman statistic, Communications in Statistics (1980), 571-595.
-
(1980)
Communications in Statistics
, pp. 571-595
-
-
Iman, R.L.1
Davenport, J.M.2
-
27
-
-
35048862917
-
That elusive diversity in classifier ensembles
-
L.I.Kuncheva, That elusive diversity in classifier ensembles, Lecture Notes in Computer Science 2652 (2003), 1126-1138.
-
(2003)
Lecture Notes in Computer Science
, vol.2652
, pp. 1126-1138
-
-
Kuncheva, L.I.1
-
29
-
-
33748611921
-
Ensemble based systems in decision making
-
R. Polikar, Ensemble based systems in decision making, IEEE Circuits and Systems Magazine 6(3) (2006), 21-45.
-
(2006)
IEEE Circuits and Systems Magazine
, vol.6
, Issue.3
, pp. 21-45
-
-
Polikar, R.1
-
30
-
-
84958554285
-
An evaluation of grading classifiers
-
Advances in Intelligent Data Analysis
-
K. Seewald and J. Furnkranz, An evaluation of grading classifiers, 4th International Conference on Advances in Intelligence Data Analysis (2001), 115-124. (Pubitemid 33348491)
-
(2001)
Lecture Notes in Computer Science
, Issue.2189
, pp. 115-124
-
-
Seewald, A.K.1
Furnkranz, J.2
-
32
-
-
33749018252
-
An analysis of diversity measures
-
DOI 10.1007/s10994-006-9449-2
-
E.K. Tang, P.N. Suganthan and X. Yao, An analysis of diversity measures, Machine Learning 65 (2006), 247-271. (Pubitemid 44451200)
-
(2006)
Machine Learning
, vol.65
, Issue.1
, pp. 247-271
-
-
Tang, E.K.1
Suganthan, P.N.2
Yao, X.3
-
34
-
-
0026692226
-
Stacked generalization
-
D.H. Wolpert, Stacked generalization, Neural Networks 5(2) (1992), 241-260.
-
(1992)
Neural Networks
, vol.5
, Issue.2
, pp. 241-260
-
-
Wolpert, D.H.1
-
35
-
-
0030549306
-
Use of methodological diversity to improve neural network generalisation
-
W.B.Yates andD. Partridge,Use of methodological diversity to improve neural network generalisation, NeuralComputing & Applications 4(2) (1996), 114-128.
-
(1996)
NeuralComputing & Applications
, vol.4
, Issue.2
, pp. 114-128
-
-
Yates, W.B.1
Partridge, D.2
|