메뉴 건너뛰기




Volumn 16, Issue 2, 2012, Pages 233-246

A design heuristic for hybrid classification ensembles in machine learning

Author keywords

ensemble classifier; ensemble design heuristic; global local learner; heterogeneous homogeneous diversity; hybrid ensemble; Machine learning

Indexed keywords

ENSEMBLE CLASSIFIERS; ENSEMBLE DESIGN HEURISTIC; GLOBAL-LOCAL; HETEROGENEOUS-HOMOGENEOUS DIVERSITY; HYBRID ENSEMBLE; MACHINE-LEARNING;

EID: 84858204091     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/IDA-2012-0521     Document Type: Article
Times cited : (5)

References (35)
  • 1
    • 32044473249 scopus 로고    scopus 로고
    • Using diversity of errors for selecting members of a committee classifier
    • DOI 10.1016/j.patcog.2005.08.017, PII S0031320305004309, Graph-Based Representations
    • M.Aksela and J. Laaksonen, Using diversity of errors for selectingmembers of a committee classifier, Pattern Recognition 39 (2006), 608-623. (Pubitemid 43199459)
    • (2006) Pattern Recognition , vol.39 , Issue.4 , pp. 608-623
    • Aksela, M.1    Laaksonen, J.2
  • 2
    • 36948999941 scopus 로고    scopus 로고
    • Retrieved from Irvine, CA: University of California, School of Information and Computer Science
    • A. Asuncion and D.J. Newman, UCI Machine Learning Repository. Retrieved from [http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, School of Information and Computer Science, 2007.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 5
    • 56349125172 scopus 로고    scopus 로고
    • On diversity and accuracy of homogeneous and heterogeneous ensembles
    • S. Bian and W. Wang, On diversity and accuracy of homogeneous and heterogeneous ensembles, International Journal of Hybrid Intelligent Systems 4 (2007), 103-128.
    • (2007) International Journal of Hybrid Intelligent Systems , vol.4 , pp. 103-128
    • Bian, S.1    Wang, W.2
  • 7
    • 0033220805 scopus 로고    scopus 로고
    • On global, local, mixed and neighborhood kernels for support vector machines
    • DOI 10.1016/S0167-8655(99)00086-0
    • V.L. Brailovsky, O. Barzilay and R. Shahave, On global, local, mixed and neighborhood kernels for support vector machines, Pattern Recognition Letters 20 (1999), 1183-1190. (Pubitemid 32261896)
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1183-1190
    • Brailovsky, V.L.1    Barzilay, O.2    Shahave, R.3
  • 8
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Machine Learning 24(2) (1996), 123-140. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 9
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman, Random forests, Machine Learning 45 (2001), 5-32. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 10
    • 33845506212 scopus 로고    scopus 로고
    • Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles
    • DOI 10.1016/j.patrec.2006.09.001, PII S0167865506002339
    • A.M. Canuto, M.C. Abreu, L.M. Oliveira, J.C. Xavier and A.M. Santos, Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles, Pattern Recognition Letters 28 (2007), 472-486. (Pubitemid 44918135)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.4 , pp. 472-486
    • Canuto, A.M.P.1    Abreu, M.C.C.2    De Melo Oliveira, L.3    Xavier Jr., J.C.4    Santos, A.D.M.5
  • 13
    • 32544431928 scopus 로고    scopus 로고
    • Evolving hybrid ensembles of learning machines for better generalisation
    • DOI 10.1016/j.neucom.2005.12.014, PII S0925231205003188
    • A. Chandra and X. Yao, Evolving hybrid ensembles of learning machines for better generalisation, Neurocomputing 69 (2006), 686-700. (Pubitemid 43230374)
    • (2006) Neurocomputing , vol.69 , Issue.7-9 SPEC. ISS. , pp. 686-700
    • Chandra, A.1    Yao, X.2
  • 14
    • 0003954942 scopus 로고    scopus 로고
    • Diversity versus quality in classification ensembles based on feature selection
    • Trinity College, Department of Computer Science, Dublin
    • P. Cunningham and J. Carney, Diversity versus quality in classification ensembles based on feature selection. Technical Report TCD-CS-2000-02, Trinity College, Department of Computer Science, Dublin, 2000.
    • (2000) Technical Report TCD-CS-2000-02
    • Cunningham, P.1    Carney, J.2
  • 15
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning 7 (2006), 1-30. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 18
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • M. Friedman, A comparison of alternative tests of significance for the problem of m rankings, Annals of Mathematical Statistics 11 (1940), 56-92.
    • (1940) Annals of Mathematical Statistics , vol.11 , pp. 56-92
    • Friedman, M.1
  • 19
    • 0001750957 scopus 로고
    • Approximations of the critical region of the Friedman statistic
    • R.L. Iman and J.M. Davenport, Approximations of the critical region of the Friedman statistic, Communications in Statistics (1980), 571-595.
    • (1980) Communications in Statistics , pp. 571-595
    • Iman, R.L.1    Davenport, J.M.2
  • 20
    • 0037598692 scopus 로고    scopus 로고
    • Local versus global models for classification problems: Fitting models where it matters
    • DOI 10.1198/0003130031423
    • D.J. Hand and V. Vinciotti, Local versus global models for classification problems: Fitting models where it matters, The American Statistician 57(2) (2003), 124-131. (Pubitemid 36594034)
    • (2003) American Statistician , vol.57 , Issue.2 , pp. 124-131
    • Hand, D.J.1    Vinciotti, V.2
  • 22
    • 0011187879 scopus 로고    scopus 로고
    • Multiple classifier combination: Lessons and the next steps
    • A. Kandel and H. Bunke, eds
    • T.K. Ho, Multiple classifier combination: Lessons and the next steps, in: Hybrid Methods in Pattern Recognition, A. Kandel and H. Bunke, eds, 2002, pp. 171-198.
    • (2002) Hybrid Methods in Pattern Recognition , pp. 171-198
    • Ho, T.K.1
  • 23
    • 79956326532 scopus 로고    scopus 로고
    • Generating diverse ensembles to counter the problem of class imbalance, advances in knowledge discovery and data mining
    • T.R. Hoens and N.V. Chawla, Generating Diverse Ensembles to Counter the Problem of Class Imbalance, Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science (2010)(6119), 488-499.
    • (2010) Lecture Notes in Computer Science , Issue.6119 , pp. 488-499
    • Hoens, T.R.1    Chawla, N.V.2
  • 24
    • 0001750957 scopus 로고
    • Approximations of the critical region of the Friedman statistic
    • R.L. Iman and J.M. Davenport, Approximations of the critical region of the Friedman statistic, Communications in Statistics (1980), 571-595.
    • (1980) Communications in Statistics , pp. 571-595
    • Iman, R.L.1    Davenport, J.M.2
  • 27
    • 35048862917 scopus 로고    scopus 로고
    • That elusive diversity in classifier ensembles
    • L.I.Kuncheva, That elusive diversity in classifier ensembles, Lecture Notes in Computer Science 2652 (2003), 1126-1138.
    • (2003) Lecture Notes in Computer Science , vol.2652 , pp. 1126-1138
    • Kuncheva, L.I.1
  • 29
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • R. Polikar, Ensemble based systems in decision making, IEEE Circuits and Systems Magazine 6(3) (2006), 21-45.
    • (2006) IEEE Circuits and Systems Magazine , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 30
    • 84958554285 scopus 로고    scopus 로고
    • An evaluation of grading classifiers
    • Advances in Intelligent Data Analysis
    • K. Seewald and J. Furnkranz, An evaluation of grading classifiers, 4th International Conference on Advances in Intelligence Data Analysis (2001), 115-124. (Pubitemid 33348491)
    • (2001) Lecture Notes in Computer Science , Issue.2189 , pp. 115-124
    • Seewald, A.K.1    Furnkranz, J.2
  • 32
    • 33749018252 scopus 로고    scopus 로고
    • An analysis of diversity measures
    • DOI 10.1007/s10994-006-9449-2
    • E.K. Tang, P.N. Suganthan and X. Yao, An analysis of diversity measures, Machine Learning 65 (2006), 247-271. (Pubitemid 44451200)
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 247-271
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 34
    • 0026692226 scopus 로고
    • Stacked generalization
    • D.H. Wolpert, Stacked generalization, Neural Networks 5(2) (1992), 241-260.
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-260
    • Wolpert, D.H.1
  • 35
    • 0030549306 scopus 로고    scopus 로고
    • Use of methodological diversity to improve neural network generalisation
    • W.B.Yates andD. Partridge,Use of methodological diversity to improve neural network generalisation, NeuralComputing & Applications 4(2) (1996), 114-128.
    • (1996) NeuralComputing & Applications , vol.4 , Issue.2 , pp. 114-128
    • Yates, W.B.1    Partridge, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.