-
1
-
-
0034830461
-
Decision templates for multiple classifier fusion: An experimental comparison
-
Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recog. 34(2), 299-314 (2001)
-
(2001)
Pattern Recog
, vol.34
, Issue.2
, pp. 299-314
-
-
Kuncheva, L.I.1
Bezdek, J.C.2
Duin, R.P.W.3
-
2
-
-
0037365188
-
-
Todorovski, L., D?zeroski, S.: Combining classifiers with meta decision trees. Mach. Learn. 50(3), 223-249 (2003)
-
Todorovski, L., D?zeroski, S.: Combining classifiers with meta decision trees. Mach. Learn. 50(3), 223-249 (2003)
-
-
-
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123-140 (1996)
-
(1996)
Mach. Learn
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
0034276320
-
Randomizing outputs to increase prediction accuracy
-
Breiman, L.: Randomizing outputs to increase prediction accuracy. Mach. Learn. 40(3), 229-242 (2000)
-
(2000)
Mach. Learn
, vol.40
, Issue.3
, pp. 229-242
-
-
Breiman, L.1
-
8
-
-
0032661927
-
Using corresponding analysis to combine classifiers
-
Merz, C.J.: Using corresponding analysis to combine classifiers. Mach. Learn. 36(1/2), 33-58 (1999)
-
(1999)
Mach. Learn
, vol.36
, Issue.1-2
, pp. 33-58
-
-
Merz, C.J.1
-
9
-
-
8444229122
-
How to make stacking better and faster while also taking care of an unknown weakness
-
Morgan Kaufmann Press, San Francisco
-
Seewald, A.K.: How to make stacking better and faster while also taking care of an unknown weakness. In: 19th International Conference on Machine learning, pp. 554-561. Morgan Kaufmann Press, San Francisco (2002)
-
(2002)
19th International Conference on Machine learning
, pp. 554-561
-
-
Seewald, A.K.1
-
10
-
-
12144288329
-
-
Džeroski, S., ?Zenko, B.: Is combining classifiers with stacking better than selecting the best ones? Mach. Learn. 54(3), 255-273 (2004)
-
Džeroski, S., ?Zenko, B.: Is combining classifiers with stacking better than selecting the best ones? Mach. Learn. 54(3), 255-273 (2004)
-
-
-
-
11
-
-
33751205340
-
Trainable fusion rules: I. Large sample size case
-
Raudys, S.: Trainable fusion rules: I. Large sample size case. Neural Networks 19(10), 1506-1516 (2006)
-
(2006)
Neural Networks
, vol.19
, Issue.10
, pp. 1506-1516
-
-
Raudys, S.1
-
12
-
-
33751229918
-
-
Raudys, S.: Trainable fusion rules: II. Small sample-size effects. Neural Networks 19(10), 1517-1527 (2006)
-
Raudys, S.: Trainable fusion rules: II. Small sample-size effects. Neural Networks 19(10), 1517-1527 (2006)
-
-
-
-
13
-
-
26444596585
-
-
Paclík, P., Landgrebe, T.C.W., Tax, D.M.J., Duin, R.P.W.: On deriving the secondstage training set for trainable combiners. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds.) MCS 2005. LNCS, 3541, pp. 136-146. Springer, Heidelberg (2005)
-
Paclík, P., Landgrebe, T.C.W., Tax, D.M.J., Duin, R.P.W.: On deriving the secondstage training set for trainable combiners. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds.) MCS 2005. LNCS, vol. 3541, pp. 136-146. Springer, Heidelberg (2005)
-
-
-
-
14
-
-
34249324838
-
Does linear combination outperform the k-NN rule?
-
IEEE Press, Beijing
-
Liu, M., Yuan, B.Z., Chen, J.F., Miao, Z.j.: Does linear combination outperform the k-NN rule? In: 8th International Conference on Signal Processing, vol. 3. IEEE Press, Beijing (2006)
-
(2006)
8th International Conference on Signal Processing
, vol.3
-
-
Liu, M.1
Yuan, B.Z.2
Chen, J.F.3
Miao, Z.J.4
-
16
-
-
0026692226
-
Stacked generalization
-
Wolpert, D.H.: Stacked generalization. Neural Networks 5(2), 241-259 (1992)
-
(1992)
Neural Networks
, vol.5
, Issue.2
, pp. 241-259
-
-
Wolpert, D.H.1
-
17
-
-
70349349275
-
-
UCI machine larning respository
-
UCI machine larning respository, http://www.ics.uci.edu/̃mlearn/ MLRespository.html
-
-
-
|