메뉴 건너뛰기




Volumn 20, Issue , 2011, Pages 213-229

Mixed-variate restricted boltzmann machines

Author keywords

[No Author keywords available]

Indexed keywords

BINARY VARIABLES; COMPLETION TOOLS; DIMENSIONALITY REDUCTION; HETEROGENEOUS DATA; LARGE-SCALE DATASET; OPINION SURVEYS; PRE-PROCESSING STEP; RESTRICTED BOLTZMANN MACHINE;

EID: 84876885548     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (22)

References (29)
  • 2
    • 0000358831 scopus 로고
    • On extending the bradley-terry model to accommodate ties in paired comparison experiments
    • R.R. Davidson. On extending the Bradley-Terry model to accommodate ties in paired comparison experiments. Journal of the American Statistical Association, 65(329):317- 328, 1970.
    • (1970) Journal of the American Statistical Association , vol.65 , Issue.329 , pp. 317-328
    • Davidson, R.R.1
  • 5
    • 0345368881 scopus 로고
    • Unsupervised learning of distributions on binary vectors using two layer networks
    • Y. Freund and D. Haussler. Unsupervised learning of distributions on binary vectors using two layer networks. Advances in Neural Information Processing Systems, pages 912-919, 1993.
    • (1993) Advances in Neural Information Processing Systems , pp. 912-919
    • Freund, Y.1    Haussler, D.2
  • 7
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G.E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14:1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 8
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G.E. Hinton and R.R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 11
    • 65449189832 scopus 로고    scopus 로고
    • Extracting shared subspace for multi-label classification
    • ACM New York, NY, USA
    • S. Ji, L. Tang, S. Yu, and J. Ye. Extracting shared subspace for multi-label classification. In KDD. ACM New York, NY, USA, 2008.
    • (2008) KDD
    • Ji, S.1    Tang, L.2    Yu, S.3    Ye, J.4
  • 13
    • 79951571992 scopus 로고    scopus 로고
    • Learning a generative model of images by factoring appearance and shape
    • N. Le Roux, N. Heess, J. Shotton, and J. Winn. Learning a generative model of images by factoring appearance and shape. Neural Computation, 23(3):593-650, 2011.
    • (2011) Neural Computation , vol.23 , Issue.3 , pp. 593-650
    • Roux, N.L.1    Heess, N.2    Shotton, J.3    Winn, J.4
  • 15
    • 40549119540 scopus 로고    scopus 로고
    • Joint modelling of mixed outcome types using latent variables
    • C. McCulloch. Joint modelling of mixed outcome types using latent variables. Statistical Methods in Medical Research, 17(1):53, 2008.
    • (2008) Statistical Methods in Medical Research , vol.17 , Issue.1 , pp. 53
    • McCulloch, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.