-
1
-
-
38349170961
-
Amino acid transport across mammalian intestinal and renal epithelia
-
Bröer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 2008;88:249-86.
-
(2008)
Physiol Rev
, vol.88
, pp. 249-286
-
-
Bröer, S.1
-
2
-
-
23044474905
-
Amino acid transporters ASCT2 and LAT1 in cancer: Partners in crime?
-
Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 2005;15:254-66.
-
(2005)
Semin Cancer Biol
, vol.15
, pp. 254-266
-
-
Fuchs, B.C.1
Bode, B.P.2
-
4
-
-
1342281232
-
CATs and HATs: The SLC7 family of amino acid transporters
-
Verrey F, Closs EI, Wagner CA, Palacin M, Endou H, Kanai Y. CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch Eur J Physiol 2004;447(5):532-42.
-
(2004)
Pflugers Arch Eur J Physiol
, vol.447
, Issue.5
, pp. 532-542
-
-
Verrey, F.1
Closs, E.I.2
Wagner, C.A.3
Palacin, M.4
Endou, H.5
Kanai, Y.6
-
5
-
-
84870947500
-
Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy
-
Jézégou A, Llinares E, Anne C, Kieffer-Jaquinod S, O'Regan S, Aupetit J, Chabli A, Sagné C, Debacker C, Chadefaux-Vekemans B, et al. Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy. Proc Natl Acad Sci USA 2012;109:E3434-43.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
-
-
Jézégou, A.1
Llinares, E.2
Anne, C.3
Kieffer-Jaquinod, S.4
O'Regan, S.5
Aupetit, J.6
Chabli, A.7
Sagné, C.8
Debacker, C.9
Chadefaux-Vekemans, B.10
-
6
-
-
0035795114
-
Homologues of archaeal rhodopsins in plants, animals and fungi: Structural and functional predications for a putative fungal chaperone protein
-
Zhai Y, Heijne WHM, Smith DW, Saier MH Jr. Homologues of archaeal rhodopsins in plants, animals and fungi: structural and functional predications for a putative fungal chaperone protein. Biochim Biophys Acta Biomembr 2001;1511:206-23.
-
(2001)
Biochim Biophys Acta Biomembr
, vol.1511
, pp. 206-223
-
-
Zhai, Y.1
Heijne, W.H.M.2
Smith, D.W.3
Saier Jr., M.H.4
-
7
-
-
79956041076
-
The role of amino acid transporters in inherited and acquired diseases
-
Bröer S, Palacin M. The role of amino acid transporters in inherited and acquired diseases. Biochem J 2011;436:193-211.
-
(2011)
Biochem J
, vol.436
, pp. 193-211
-
-
Bröer, S.1
Palacin, M.2
-
8
-
-
0035503565
-
Cystinosin, the protein defective in cystinosis, is a H+-driven lysosomal cystine transporter
-
Kalatzis V, Cherqui S, Antignac C, Gasnier B. Cystinosin, the protein defective in cystinosis, is a H+-driven lysosomal cystine transporter. EMBO J 2001;20:5940-9.
-
(2001)
EMBO J
, vol.20
, pp. 5940-5949
-
-
Kalatzis, V.1
Cherqui, S.2
Antignac, C.3
Gasnier, B.4
-
9
-
-
0025095302
-
Role of amino acid transport and countertransport in nutrition and metabolism
-
Christensen HN. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 1990;70:43-77.
-
(1990)
Physiol Rev
, vol.70
, pp. 43-77
-
-
Christensen, H.N.1
-
10
-
-
65649152957
-
Amino acid transceptors: Gate keepers of nutrient exchange and regulators of nutrient signaling
-
Hundal HS, Taylor PM. Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling. Am J Physiol Endocrinol Metab 2009;296:E603-13.
-
(2009)
Am J Physiol Endocrinol Metab
, vol.296
-
-
Hundal, H.S.1
Taylor, P.M.2
-
11
-
-
65649128580
-
Amino acid regulation of TOR complex 1
-
Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N. Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab 2009;296:E592-602.
-
(2009)
Am J Physiol Endocrinol Metab
, vol.296
-
-
Avruch, J.1
Long, X.2
Ortiz-Vega, S.3
Rapley, J.4
Papageorgiou, A.5
Dai, N.6
-
12
-
-
84894486696
-
Nutrient regulation of the mTOR complex 1 signaling pathway
-
Kim SG, Buel G, Blenis J. Nutrient regulation of the mTOR complex 1 signaling pathway. Mol Cell 2013;35:463-73.
-
(2013)
Mol Cell
, vol.35
, pp. 463-473
-
-
Kim, S.G.1
Buel, G.2
Blenis, J.3
-
13
-
-
60149091189
-
Regulation of translation initiation in eukaryotes: Mechanisms and biological targets
-
Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009;136:731-45.
-
(2009)
Cell
, vol.136
, pp. 731-745
-
-
Sonenberg, N.1
Hinnebusch, A.G.2
-
14
-
-
84870885054
-
Amino acid sensing in dietaryrestriction-mediated longevity: Roles of signal-transducing kinases GCN2 and TOR
-
Gallinetti J, Harputlugil E, Mitchell JR. Amino acid sensing in dietaryrestriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J 2013;449:1-10.
-
(2013)
Biochem J
, vol.449
, pp. 1-10
-
-
Gallinetti, J.1
Harputlugil, E.2
Mitchell, J.R.3
-
15
-
-
84871260456
-
Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes
-
Ögmundsdóttir MH, Heublein S, Kazi S, Reynolds B, Visvalingam SM, Shaw MK, Goberdhan DCI. Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes. PLoS ONE 2012;7:e36616.
-
(2012)
PLoS ONE
, vol.7
-
-
Ögmundsdóttir, M.H.1
Heublein, S.2
Kazi, S.3
Reynolds, B.4
Visvalingam, S.M.5
Shaw, M.K.6
Goberdhan, D.C.I.7
-
16
-
-
80555143078
-
MTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011;334:678-83.
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
17
-
-
59049087460
-
Bidirectional transport of amino acids regulates mTOR and autophagy
-
Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009;136:521-34.
-
(2009)
Cell
, vol.136
, pp. 521-534
-
-
Nicklin, P.1
Bergman, P.2
Zhang, B.3
Triantafellow, E.4
Wang, H.5
Nyfeler, B.6
Yang, H.7
Hild, M.8
Kung, C.9
Wilson, C.10
-
18
-
-
80053614972
-
SNAT2 transceptor signalling via mTOR: A role in cell growth and proliferation?
-
Pinilla J, Aledo JC, Cwiklinski E, Hyde R, Taylor PM, Hundal HS. SNAT2 transceptor signalling via mTOR: a role in cell growth and proliferation? Front Biosci (Elite Ed) 2011;3:1289-99.
-
(2011)
Front Biosci (Elite Ed)
, vol.3
, pp. 1289-1299
-
-
Pinilla, J.1
Aledo, J.C.2
Cwiklinski, E.3
Hyde, R.4
Taylor, P.M.5
Hundal, H.S.6
-
19
-
-
80054682244
-
From transporter to transceptor: Signaling from transporters provokes re-evaluation of complex trafficking and regulatory controls
-
Kriel J, Haesendonckx S, Rubio-Texeira M, Van Zeebroeck G, Thevelein JM. From transporter to transceptor: signaling from transporters provokes re-evaluation of complex trafficking and regulatory controls. Bioessays 2011;33:870-9.
-
(2011)
Bioessays
, vol.33
, pp. 870-879
-
-
Kriel, J.1
Haesendonckx, S.2
Rubio-Texeira, M.3
Van Zeebroeck, G.4
Thevelein, J.M.5
-
20
-
-
84876514626
-
Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation
-
Sinclair LV, Rolf J, Emslie E, Shi Y-B, Taylor PM, Cantrell DA. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 2013;14:500-8.
-
(2013)
Nat Immunol
, vol.14
, pp. 500-508
-
-
Sinclair, L.V.1
Rolf, J.2
Emslie, E.3
Shi, Y.-B.4
Taylor, P.M.5
Cantrell, D.A.6
-
21
-
-
84864348386
-
Exercise and amino acid anabolic cell signaling and the regulation of skeletal muscle mass
-
Pasiakos SM. Exercise and amino acid anabolic cell signaling and the regulation of skeletal muscle mass. Nutrients 2012;4(7):740-58.
-
(2012)
Nutrients
, vol.4
, Issue.7
, pp. 740-758
-
-
Pasiakos, S.M.1
-
22
-
-
84862908818
-
AMPK and mTOR in cellular energy homeostasis and drug targets
-
Inoki K, Kim J, Guan K-L. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 2012;52: 381-400.
-
(2012)
Annu Rev Pharmacol Toxicol
, vol.52
, pp. 381-400
-
-
Inoki, K.1
Kim, J.2
Guan, K.-L.3
-
23
-
-
84865592978
-
Amino acids and mTORC1: From lysosomes to disease
-
Efeyan A, Zoncu R, Sabatini DM. Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med 2012;18:524-33.
-
(2012)
Trends Mol Med
, vol.18
, pp. 524-533
-
-
Efeyan, A.1
Zoncu, R.2
Sabatini, D.M.3
-
24
-
-
77956556496
-
Control of translation initiation through integration of signals generated by hormones, nutrients, and exercise
-
Kimball SR, Jefferson LS. Control of translation initiation through integration of signals generated by hormones, nutrients, and exercise. J Biol Chem 2010;285:29027-32.
-
(2010)
J Biol Chem
, vol.285
, pp. 29027-29032
-
-
Kimball, S.R.1
Jefferson, L.S.2
-
26
-
-
84863045210
-
Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis
-
Iadevaia V, Huo Y, Zhang Z, Foster LJ, Proud CG. Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis. Biochem Soc Trans 2012;40:168-72.
-
(2012)
Biochem Soc Trans
, vol.40
, pp. 168-172
-
-
Iadevaia, V.1
Huo, Y.2
Zhang, Z.3
Foster, L.J.4
Proud, C.G.5
-
27
-
-
84856453804
-
Regulation of TOR by small GTPases
-
Durán RV, Hall MN. Regulation of TOR by small GTPases. EMBO Rep 2012;13:121-8.
-
(2012)
EMBO Rep
, vol.13
, pp. 121-128
-
-
Durán, R.V.1
Hall, M.N.2
-
28
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010;141:290-303.
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
29
-
-
84866431363
-
Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1
-
Bar-Peled L, Schweitzer Lawrence D, Zoncu R, Sabatini David M. Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1. Cell 2012;150:1196-208.
-
(2012)
Cell
, vol.150
, pp. 1196-1208
-
-
Bar-Peled, L.1
Schweitzer Lawrence, D.2
Zoncu, R.3
Sabatini David, M.4
-
30
-
-
80053586265
-
P62 Is a key regulator of nutrient sensing in the mTORC1 pathway
-
Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S, Porollo A, Hansen M, Moscat J, Diaz-Meco MT. p62 Is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell 2011;44:134-46.
-
(2011)
Mol Cell
, vol.44
, pp. 134-146
-
-
Duran, A.1
Amanchy, R.2
Linares, J.F.3
Joshi, J.4
Abu-Baker, S.5
Porollo, A.6
Hansen, M.7
Moscat, J.8
Diaz-Meco, M.T.9
-
31
-
-
84862777407
-
Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
-
Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu SH, Kim S. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 2012;149:410-24.
-
(2012)
Cell
, vol.149
, pp. 410-424
-
-
Han, J.M.1
Jeong, S.J.2
Park, M.C.3
Kim, G.4
Kwon, N.H.5
Kim, H.K.6
Ha, S.H.7
Ryu, S.H.8
Kim, S.9
-
32
-
-
84872687720
-
Glutamine stimulates mTORC1 independent of the cell content of essential amino acids
-
Chiu M, Tardito S, Barilli A, Bianchi M, Dall'Asta V, Bussolati O. Glutamine stimulates mTORC1 independent of the cell content of essential amino acids. Amino Acids 2012;43:2561-7.
-
(2012)
Amino Acids
, vol.43
, pp. 2561-2567
-
-
Chiu, M.1
Tardito, S.2
Barilli, A.3
Bianchi, M.4
Dall'asta, V.5
Bussolati, O.6
-
33
-
-
84864931233
-
Glutaminolysis activates Rag-mTORC1 signaling
-
Durán RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, Hall MN. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 2012;47:349-58.
-
(2012)
Mol Cell
, vol.47
, pp. 349-358
-
-
Durán, R.V.1
Oppliger, W.2
Robitaille, A.M.3
Heiserich, L.4
Skendaj, R.5
Gottlieb, E.6
Hall, M.N.7
-
34
-
-
79960661606
-
Impaired nutrient signaling and body weight control in a Na+ neutral amino acid cotransporter (Slc6a19)- deficient mouse
-
Bröer A, Juelich T, Vanslambrouck JM, Tietze N, Solomon PS, Holst J, Bailey CG, Rasko JE, Broer S. Impaired nutrient signaling and body weight control in a Na+ neutral amino acid cotransporter (Slc6a19)- deficient mouse. J Biol Chem 2011;286:26638-51.
-
(2011)
J Biol Chem
, vol.286
, pp. 26638-26651
-
-
Bröer, A.1
Juelich, T.2
Vanslambrouck, J.M.3
Tietze, N.4
Solomon, P.S.5
Holst, J.6
Bailey, C.G.7
Rasko, J.E.8
Broer, S.9
-
35
-
-
32544452111
-
System B0,+ amino acid transport regulates the penetration stage of blastocyst implantation with possible long-term developmental consequences through adulthood
-
Van Winkle LJ, Tesch JK, Shah A, Campione AL. System B0,+ amino acid transport regulates the penetration stage of blastocyst implantation with possible long-term developmental consequences through adulthood. Hum Reprod Update 2006;12:145-57.
-
(2006)
Hum Reprod Update
, vol.12
, pp. 145-157
-
-
Van Winkle, L.J.1
Tesch, J.K.2
Shah, A.3
Campione, A.L.4
-
36
-
-
0038050529
-
Interorgan amino acid transport and its regulation
-
Brosnan JT. Interorgan amino acid transport and its regulation. J Nutr 2003;133(suppl 1):2068S-72S.
-
(2003)
J Nutr
, vol.133
, Issue.SUPPL. 1
-
-
Brosnan, J.T.1
-
37
-
-
69049097269
-
Tertiary active transport of amino acids reconstituted by coexpression of system A and L transporters in Xenopus oocytes
-
Baird FE, Bett KJ, Maclean C, Tee AR, Hundal HS, Taylor PM. Tertiary active transport of amino acids reconstituted by coexpression of system A and L transporters in Xenopus oocytes. Am J Physiol Endocrinol Metab 2009;297:E822-9.
-
(2009)
Am J Physiol Endocrinol Metab
, vol.297
-
-
Baird, F.E.1
Bett, K.J.2
MacLean, C.3
Tee, A.R.4
Hundal, H.S.5
Taylor, P.M.6
-
38
-
-
84870925392
-
HIF2a acts as an mTORC1 activator through the amino acid carrier SLC7A5
-
Elorza A, Soro-Arnáiz I, Meléndez-Rodríguez F, Rodríguez-Vaello V, Marsboom G, de Cárcer G, Acosta-Iborra B, Albacete-Albacete L, Ordóñez A, Serrano-Oviedo L, Giménez-Bachs JM, et al. HIF2a acts as an mTORC1 activator through the amino acid carrier SLC7A5. Mol Cell 2012;48:681-91.
-
(2012)
Mol Cell
, vol.48
, pp. 681-691
-
-
Elorza, A.1
Soro-Arnáiz, I.2
Meléndez-Rodríguez, F.3
Rodríguez-Vaello, V.4
Marsboom, G.5
De Cárcer, G.6
Acosta-Iborra, B.7
Albacete-Albacete, L.8
Ordóñez, A.9
Serrano-Oviedo, L.10
Giménez-Bachs, J.M.11
-
39
-
-
84876782429
-
Cellular signaling of amino acids towards mTORC1 activation in impaired human leucine catabolism
-
Schriever SC, Deutsch MJ, Adamski J, Roscher AA, Ensenauer R. Cellular signaling of amino acids towards mTORC1 activation in impaired human leucine catabolism. J Nutr Biochem 2013;24:824-31.
-
(2013)
J Nutr Biochem
, vol.24
, pp. 824-831
-
-
Schriever, S.C.1
Deutsch, M.J.2
Adamski, J.3
Roscher, A.A.4
Ensenauer, R.5
-
40
-
-
33846444928
-
The cationic amino acid transporters CAT1 and CAT3 mediate NMDA receptor activation-dependent changes in elaboration of neuronal processes via the mammalian target of rapamycin mTOR pathway
-
Huang Y, Kang BN, Tian J, Liu Y, Luo HR, Hester L, Snyder SH. The cationic amino acid transporters CAT1 and CAT3 mediate NMDA receptor activation-dependent changes in elaboration of neuronal processes via the mammalian target of rapamycin mTOR pathway. J Neurosci 2007; 27:449-58.
-
(2007)
J Neurosci
, vol.27
, pp. 449-458
-
-
Huang, Y.1
Kang, B.N.2
Tian, J.3
Liu, Y.4
Luo, H.R.5
Hester, L.6
Snyder, S.H.7
-
41
-
-
0035912839
-
Identification and characterization of a lysosomal transporter for small neutral amino acids
-
Sagné C, Agulhon C, Ravassard P, Darmon M, Hamon M, El Mestikawy S, Gasnier B, Giros B. Identification and characterization of a lysosomal transporter for small neutral amino acids. Proc Natl Acad Sci USA 2001; 98:7206-11.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 7206-7211
-
-
Sagné, C.1
Agulhon, C.2
Ravassard, P.3
Darmon, M.4
Hamon, M.5
El Mestikawy, S.6
Gasnier, B.7
Giros, B.8
-
42
-
-
84875161720
-
Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects
-
Schiöth HB, Roshanbin S, Hägglund MGA, Fredriksson R. Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects. Mol Aspects Med 2013;34:571-85.
-
(2013)
Mol Aspects Med
, vol.34
, pp. 571-585
-
-
Schiöth, H.B.1
Roshanbin, S.2
Hägglund, M.G.A.3
Fredriksson, R.4
-
43
-
-
77954757143
-
Proton-assisted amino-acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation
-
Heublein S, Kazi S, Ogmundsdottir MH, Attwood EV, Kala S, Boyd CA, Wilson C, Goberdhan DC. Proton-assisted amino-acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation. Oncogene 2010;29:4068-79.
-
(2010)
Oncogene
, vol.29
, pp. 4068-4079
-
-
Heublein, S.1
Kazi, S.2
Ogmundsdottir, M.H.3
Attwood, E.V.4
Kala, S.5
Boyd, C.A.6
Wilson, C.7
Goberdhan, D.C.8
-
44
-
-
78649772767
-
Amino acid derivatives are substrates or non-transported inhibitors of the amino acid transporter PAT2 (slc36a2)
-
Edwards N, Anderson CMH, Gatfield KM, Jevons MP, Ganapathy V, Thwaites DT. Amino acid derivatives are substrates or non-transported inhibitors of the amino acid transporter PAT2 (slc36a2). Biochim Biophys Acta 2011;1808:260-70.
-
(2011)
Biochim Biophys Acta
, vol.1808
, pp. 260-270
-
-
Edwards, N.1
Anderson, C.M.H.2
Gatfield, K.M.3
Jevons, M.P.4
Ganapathy, V.5
Thwaites, D.T.6
-
46
-
-
0025746712
-
The transport systems of mammalian lysosomes
-
Pisoni RL, Thoene JG. The transport systems of mammalian lysosomes. Biochim Biophys Acta 1991;1071:351-73.
-
(1991)
Biochim Biophys Acta
, vol.1071
, pp. 351-373
-
-
Pisoni, R.L.1
Thoene, J.G.2
-
47
-
-
0025300663
-
Characterization of lysosomal monoiodotyrosine transport in rat thyroid cells: Evidence for transport by system h
-
Andersson HC, Kohn LD, Bernardini I, Blom HJ, Tietze F, Gahl WA. Characterization of lysosomal monoiodotyrosine transport in rat thyroid cells: evidence for transport by system h. J Biol Chem 1990;265: 10950-4.
-
(1990)
J Biol Chem
, vol.265
, pp. 10950-10954
-
-
Andersson, H.C.1
Kohn, L.D.2
Bernardini, I.3
Blom, H.J.4
Tietze, F.5
Gahl, W.A.6
-
48
-
-
84878707013
-
An extended proteome map of the lysosomal membrane reveals novel potential transporters
-
Chapel A, Kieffer-Jaquinod S, Sagné C, Verdon Q, Ivaldi C, Mellal M, Thirion J, Jadot M, Bruley C, Garin J, et al. An extended proteome map of the lysosomal membrane reveals novel potential transporters. Mol Cell Proteomics 2013;12:1572-88.
-
(2013)
Mol Cell Proteomics
, vol.12
, pp. 1572-1588
-
-
Chapel, A.1
Kieffer-Jaquinod, S.2
Sagné, C.3
Verdon, Q.4
Ivaldi, C.5
Mellal, M.6
Thirion, J.7
Jadot, M.8
Bruley, C.9
Garin, J.10
-
49
-
-
79957984261
-
Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons
-
Hägglund MGA, Sreedharan S, Nilsson VCO, Shaik JHA, Almkvist IM, Bäcklin S, Wrange Ö, Fredriksson R. Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons. J Biol Chem 2011;286:20500-11.
-
(2011)
J Biol Chem
, vol.286
, pp. 20500-20511
-
-
Hägglund, M.G.A.1
Sreedharan, S.2
Nilsson, V.C.O.3
Shaik, J.H.A.4
Almkvist, I.M.5
Bäcklin, S.6
Wrange, Ö.7
Fredriksson, R.8
-
50
-
-
33646228377
-
Characterization of the amino acid response element within the human sodiumcoupled neutral amino acid transporter 2 (SNAT2) system A transporter gene
-
Palii SS, Thiaville MM, Pan Y-X, Zhong C, Kilberg MS. Characterization of the amino acid response element within the human sodiumcoupled neutral amino acid transporter 2 (SNAT2) system A transporter gene. Biochem J 2006;395:517-27.
-
(2006)
Biochem J
, vol.395
, pp. 517-527
-
-
Palii, S.S.1
Thiaville, M.M.2
Pan, Y.-X.3
Zhong, C.4
Kilberg, M.S.5
-
51
-
-
33745838924
-
Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and CAP-independent translation
-
Gaccioli F, Huang CC, Wang C, Bevilacqua E, Franchi-Gazzola R, Gazzola GC, Bussolati O, Snider MD, Hatzoglou M. Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and CAP-independent translation. J Biol Chem 2006;281:17929-40.
-
(2006)
J Biol Chem
, vol.281
, pp. 17929-17940
-
-
Gaccioli, F.1
Huang, C.C.2
Wang, C.3
Bevilacqua, E.4
Franchi-Gazzola, R.5
Gazzola, G.C.6
Bussolati, O.7
Snider, M.D.8
Hatzoglou, M.9
-
52
-
-
34547124353
-
Distinct sensor pathways in the hierarchical control of SNAT2, a putative amino acid transceptor, by amino acid availability
-
Hyde R, Cwiklinski EL, Macaulay K, Taylor PM, Hundal HS. Distinct sensor pathways in the hierarchical control of SNAT2, a putative amino acid transceptor, by amino acid availability. J Biol Chem 2007;282: 19788-98.
-
(2007)
J Biol Chem
, vol.282
, pp. 19788-19798
-
-
Hyde, R.1
Cwiklinski, E.L.2
MacAulay, K.3
Taylor, P.M.4
Hundal, H.S.5
-
53
-
-
84868155380
-
The brain's response to an essential amino aciddeficient diet and the circuitous route to a better meal
-
Gietzen DW, Aja SM. The brain's response to an essential amino aciddeficient diet and the circuitous route to a better meal. Mol Neurobiol 2012;46:332-48.
-
(2012)
Mol Neurobiol
, vol.46
, pp. 332-348
-
-
Gietzen, D.W.1
Aja, S.M.2
-
54
-
-
84863997137
-
LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis
-
Liu B, Du H, Rutkowski R, Gartner A, Wang X. LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis. Science 2012;337:351-4.
-
(2012)
Science
, vol.337
, pp. 351-354
-
-
Liu, B.1
Du, H.2
Rutkowski, R.3
Gartner, A.4
Wang, X.5
-
55
-
-
33750984523
-
Brasilicardin A, a natural immunosuppressant, targets amino acid transport system L
-
Usui T, Nagumo Y, Watanabe A, Kubota T, Komatsu K, Kobayashi J, Osada H. Brasilicardin A, a natural immunosuppressant, targets amino acid transport system L. Chem Biol 2006;13:1153-60.
-
(2006)
Chem Biol
, vol.13
, pp. 1153-1160
-
-
Usui, T.1
Nagumo, Y.2
Watanabe, A.3
Kubota, T.4
Komatsu, K.5
Kobayashi, J.6
Osada, H.7
-
56
-
-
71849117839
-
L-type amino acid transporter 1 inhibitors inhibit tumor cell growth
-
Oda K, Hosoda N, Endo H, Saito K, Tsujihara K, Yamamura M, Sakata T, Anzai N, Wempe MF, Kanai Y, et al. L-type amino acid transporter 1 inhibitors inhibit tumor cell growth. Cancer Sci 2010;101:173-9.
-
(2010)
Cancer Sci
, vol.101
, pp. 173-179
-
-
Oda, K.1
Hosoda, N.2
Endo, H.3
Saito, K.4
Tsujihara, K.5
Yamamura, M.6
Sakata, T.7
Anzai, N.8
Wempe, M.F.9
Kanai, Y.10
-
57
-
-
77950839133
-
An increase in essential amino acid availability upregulates amino acid transporter expression in human skeletal muscle
-
Drummond MJ, Glynn EL, Fry CS, Timmerman KL, Volpi E, Rasmussen BB. An increase in essential amino acid availability upregulates amino acid transporter expression in human skeletal muscle. Am J Physiol Endocrinol Metab 2010;298:E1011-8.
-
(2010)
Am J Physiol Endocrinol Metab
, vol.298
-
-
Drummond, M.J.1
Glynn, E.L.2
Fry, C.S.3
Timmerman, K.L.4
Volpi, E.5
Rasmussen, B.B.6
-
58
-
-
83255164815
-
The competitive advantage of a dual-transporter system
-
Levy S, Kafri M, Carmi M, Barkai N. The competitive advantage of a dual-transporter system. Science 2011;334:1408-12.
-
(2011)
Science
, vol.334
, pp. 1408-1412
-
-
Levy, S.1
Kafri, M.2
Carmi, M.3
Barkai, N.4
-
59
-
-
84355166527
-
Leucine and arginine regulate trophoblast motility through mTOR-dependent and independent pathways in the preimplantation mouse embryo
-
González IM, Martin PM, Burdsal C, Sloan JL, Mager S, Harris T, Sutherland AE. Leucine and arginine regulate trophoblast motility through mTOR-dependent and independent pathways in the preimplantation mouse embryo. Dev Biol 2012;361:286-300.
-
(2012)
Dev Biol
, vol.361
, pp. 286-300
-
-
González, I.M.1
Martin, P.M.2
Burdsal, C.3
Sloan, J.L.4
Mager, S.5
Harris, T.6
Sutherland, A.E.7
-
60
-
-
58349106216
-
Regulation of placental amino acid transporter activity by mammalian target of rapamycin
-
Roos S, Kanai Y, Prasad PD, Powell TL, Jansson T. Regulation of placental amino acid transporter activity by mammalian target of rapamycin. Am J Physiol Cell Physiol 2009;296:C142-50.
-
(2009)
Am J Physiol Cell Physiol
, vol.296
-
-
Roos, S.1
Kanai, Y.2
Prasad, P.D.3
Powell, T.L.4
Jansson, T.5
-
61
-
-
34347211057
-
Mammalian target of rapamycin in the human placenta regulates leucine transport and is down-regulated in restricted fetal growth
-
Roos S, Jansson N, Palmberg I, Säljö K, Powell TL, Jansson T. Mammalian target of rapamycin in the human placenta regulates leucine transport and is down-regulated in restricted fetal growth. J Physiol 2007;582:449-59.
-
(2007)
J Physiol
, vol.582
, pp. 449-459
-
-
Roos, S.1
Jansson, N.2
Palmberg, I.3
Säljö, K.4
Powell, T.L.5
Jansson, T.6
-
62
-
-
84862757927
-
Insulin resistance and the metabolism of branched-chain amino acids in humans
-
Adeva MM, Calvino J, Souto G, Donapetry C. Insulin resistance and the metabolism of branched-chain amino acids in humans. Amino Acids 2012;43:171-81.
-
(2012)
Amino Acids
, vol.43
, pp. 171-181
-
-
Adeva, M.M.1
Calvino, J.2
Souto, G.3
Donapetry, C.4
-
63
-
-
79959453305
-
Dietary leucine-an environmental modifier of insulin resistance acting on multiple levels of metabolism
-
Macotela Y, Emanuelli B, Bang AM, Espinoza DO, Boucher J, Beebe K, Gall W, Kahn CR. Dietary leucine-an environmental modifier of insulin resistance acting on multiple levels of metabolism. PLoS ONE 2011;6:e21187.
-
(2011)
PLoS ONE
, vol.6
-
-
MacOtela, Y.1
Emanuelli, B.2
Bang, A.M.3
Espinoza, D.O.4
Boucher, J.5
Beebe, K.6
Gall, W.7
Kahn, C.R.8
-
64
-
-
82355187973
-
Leucine or carbohydrate supplementation reduces AMPK and eEF2 phosphorylation and extends postprandial muscle protein synthesis in rats
-
Wilson GJ, Layman DK, Moulton CJ, Norton LE, Anthony TG, Proud CG, Rupassara SI, Garlick PJ. Leucine or carbohydrate supplementation reduces AMPK and eEF2 phosphorylation and extends postprandial muscle protein synthesis in rats. Am J Physiol Endocrinol Metab 2011;301:E1236-42.
-
(2011)
Am J Physiol Endocrinol Metab
, vol.301
-
-
Wilson, G.J.1
Layman, D.K.2
Moulton, C.J.3
Norton, L.E.4
Anthony, T.G.5
Proud, C.G.6
Rupassara, S.I.7
Garlick, P.J.8
-
65
-
-
84872369332
-
The mTORC1 signaling repressors REDD1/2 are rapidly induced and activation of p70S6K1 by leucine is defective in skeletal muscle of an immobilized rat hindlimb
-
Kelleher AR, Kimball SR, Dennis MD, Schilder RJ, Jefferson LS. The mTORC1 signaling repressors REDD1/2 are rapidly induced and activation of p70S6K1 by leucine is defective in skeletal muscle of an immobilized rat hindlimb. Am J Physiol Endocrinol Metab 2013;304:E229-36.
-
(2013)
Am J Physiol Endocrinol Metab
, vol.304
-
-
Kelleher, A.R.1
Kimball, S.R.2
Dennis, M.D.3
Schilder, R.J.4
Jefferson, L.S.5
-
66
-
-
64249113497
-
Dietary guidelines should reflect new understandings about adult protein needs
-
Layman DK. Dietary guidelines should reflect new understandings about adult protein needs. Nutr Metab 2009;6:12.
-
(2009)
Nutr Metab
, vol.6
, pp. 12
-
-
Layman, D.K.1
-
67
-
-
79551565620
-
Amino acid signaling to mTOR mediated by inositol polyphosphate multikinase
-
Kim S, Kim SF, Maag D, Maxwell M, Resnick AC, Juluri KR, Chakraborty A, Koldobskiy MA, Cha, SH, Barrow R, et al. Amino acid signaling to mTOR mediated by inositol polyphosphate multikinase. Cell Metab 2011;13:215-21.
-
(2011)
Cell Metab
, vol.13
, pp. 215-221
-
-
Kim, S.1
Kim, S.F.2
Maag, D.3
Maxwell, M.4
Resnick, A.C.5
Juluri, K.R.6
Chakraborty, A.7
Koldobskiy, M.A.8
Cha, S.H.9
Barrow, R.10
-
68
-
-
77649269312
-
PP2AT61e is an inhibitor of MAP4K3 in nutrient signaling to mTOR
-
Yan L, Mieulet V, Burgess D, Findlay GM, Sully K, Procter J, Goris J, Janssens V, Morrice NA, Lamb RF. PP2AT61e is an inhibitor of MAP4K3 in nutrient signaling to mTOR. Mol Cell 2010;37:633-42.
-
(2010)
Mol Cell
, vol.37
, pp. 633-642
-
-
Yan, L.1
Mieulet, V.2
Burgess, D.3
Findlay, G.M.4
Sully, K.5
Procter, J.6
Goris, J.7
Janssens, V.8
Morrice, N.A.9
Lamb, R.F.10
-
69
-
-
25444457577
-
HVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase
-
Byfield MP, Murray JT, Backer JM. hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 2005;280:33076-82.
-
(2005)
J Biol Chem
, vol.280
, pp. 33076-33082
-
-
Byfield, M.P.1
Murray, J.T.2
Backer, J.M.3
-
70
-
-
42649112409
-
Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34
-
Gulati P, Gaspers LD, Dann SG, Joaquin M, Nobukuni T, Natt F, Kozma SC, Thomas AP, Thomas G. Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab 2008;7:456-65.
-
(2008)
Cell Metab
, vol.7
, pp. 456-465
-
-
Gulati, P.1
Gaspers, L.D.2
Dann, S.G.3
Joaquin, M.4
Nobukuni, T.5
Natt, F.6
Kozma, S.C.7
Thomas, A.P.8
Thomas, G.9
-
71
-
-
58049216316
-
RalA functions as an indispensable signal mediator for the nutrientsensing system
-
Maehama T, Tanaka M, Nishina H, Murakami M, Kanaho Y, Hanada K. RalA functions as an indispensable signal mediator for the nutrientsensing system. J Biol Chem 2008;283:35053-9.
-
(2008)
J Biol Chem
, vol.283
, pp. 35053-35059
-
-
Maehama, T.1
Tanaka, M.2
Nishina, H.3
Murakami, M.4
Kanaho, Y.5
Hanada, K.6
-
72
-
-
77954671228
-
Role of N-end rule ubiquitin ligases UBR1 and UBR2 in regulating the leucine-mTOR signaling pathway
-
Kume K, Iizumi Y, Shimada M, Ito Y, Kishi T, Yamaguchi Y, Handa H. Role of N-end rule ubiquitin ligases UBR1 and UBR2 in regulating the leucine-mTOR signaling pathway. Genes Cells 2010;15:339-49.
-
(2010)
Genes Cells
, vol.15
, pp. 339-349
-
-
Kume, K.1
Iizumi, Y.2
Shimada, M.3
Ito, Y.4
Kishi, T.5
Yamaguchi, Y.6
Handa, H.7
|