메뉴 건너뛰기




Volumn 33, Issue 11, 2011, Pages 870-879

From transporter to transceptor: Signaling from transporters provokes re-evaluation of complex trafficking and regulatory controls: Endocytic internalization and intracellular trafficking of nutrient transceptors may, at least in part, be governed by their signaling function

Author keywords

Intracellular trafficking; Nutrient sensing; Nutrient transport; Signal transduction; Transceptor

Indexed keywords

CARRIER PROTEIN; CYCLIC AMP DEPENDENT PROTEIN KINASE; PROTEIN GAP 1; UNCLASSIFIED DRUG;

EID: 80054682244     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201100100     Document Type: Article
Times cited : (65)

References (89)
  • 1
    • 0025372080 scopus 로고
    • GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression
    • Jauniaux JC, Grenson M. 1990. GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem 190: 39- 44.
    • (1990) Eur J Biochem , vol.190 , pp. 39-44
    • Jauniaux, J.C.1    Grenson, M.2
  • 2
    • 0030990121 scopus 로고    scopus 로고
    • Physiological regulation of membrane protein sorting late in the secretory pathway of Saccharomyces cerevisiae
    • Roberg KJ, Rowley N, Kaiser CA. 1997. Physiological regulation of membrane protein sorting late in the secretory pathway of Saccharomyces cerevisiae J Cell Biol 137: 1469- 82.
    • (1997) J Cell Biol , vol.137 , pp. 1469-1482
    • Roberg, K.J.1    Rowley, N.2    Kaiser, C.A.3
  • 3
    • 33745615846 scopus 로고    scopus 로고
    • Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway
    • Rubio-Texeira M, Kaiser CA. 2006. Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway. Mol Biol Cell 17: 3031- 50.
    • (2006) Mol Biol Cell , vol.17 , pp. 3031-3050
    • Rubio-Texeira, M.1    Kaiser, C.A.2
  • 4
    • 0035941194 scopus 로고    scopus 로고
    • Ubiquitin is required for sorting to the vacuole of the yeast general amino acid permease, Gap1
    • Soetens O, De Craene JO, Andre B. 2001. Ubiquitin is required for sorting to the vacuole of the yeast general amino acid permease, Gap1. J Biol Chem 276: 43949- 57.
    • (2001) J Biol Chem , vol.276 , pp. 43949-43957
    • Soetens, O.1    De Craene, J.O.2    Andre, B.3
  • 5
    • 0031867271 scopus 로고    scopus 로고
    • Nitrogen-regulated ubiquitination of the Gap1 permease of Saccharomyces cerevisiae
    • Springael JY, Andre B. 1998. Nitrogen-regulated ubiquitination of the Gap1 permease of Saccharomyces cerevisiae Mol Biol Cell 9: 1253- 63.
    • (1998) Mol Biol Cell , vol.9 , pp. 1253-1263
    • Springael, J.Y.1    Andre, B.2
  • 6
    • 15844424064 scopus 로고    scopus 로고
    • Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease
    • Galan JM, Moreau V, Andre B, Volland C, et al. 1996. Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J Biol Chem 271: 10946- 52.
    • (1996) J Biol Chem , vol.271 , pp. 10946-10952
    • Galan, J.M.1    Moreau, V.2    Andre, B.3    Volland, C.4
  • 7
    • 0032738114 scopus 로고    scopus 로고
    • Intracellular localization of an active green fluorescent protein-tagged Pho84 phosphate permease in Saccharomyces cerevisiae
    • Petersson J, Pattison J, Kruckeberg AL, Berden JA, et al. 1999. Intracellular localization of an active green fluorescent protein-tagged Pho84 phosphate permease in Saccharomyces cerevisiae FEBS Lett 462: 37- 42.
    • (1999) FEBS Lett , vol.462 , pp. 37-42
    • Petersson, J.1    Pattison, J.2    Kruckeberg, A.L.3    Berden, J.A.4
  • 8
    • 2942568108 scopus 로고    scopus 로고
    • 2+ transporter, Smf1p, is regulated by ubiquitin-dependent vacuolar protein sorting
    • 2+ transporter, Smf1p, is regulated by ubiquitin-dependent vacuolar protein sorting. Genetics 167: 107- 17.
    • (2004) Genetics , vol.167 , pp. 107-117
    • Eguez, L.1    Chung, Y.S.2    Kuchibhatla, A.3    Paidhungat, M.4
  • 9
    • 20444485752 scopus 로고    scopus 로고
    • Post-transcriptional regulation of the yeast high affinity iron transport system
    • Felice MR, De Domenico I, Li L, Ward DM, et al. 2005. Post-transcriptional regulation of the yeast high affinity iron transport system. J Biol Chem 280: 22181- 90.
    • (2005) J Biol Chem , vol.280 , pp. 22181-22190
    • Felice, M.R.1    De Domenico, I.2    Li, L.3    Ward, D.M.4
  • 10
    • 0034161957 scopus 로고    scopus 로고
    • Zinc-regulated ubiquitin conjugation signals endocytosis of the yeast ZRT1 zinc transporter
    • Gitan RS, Eide DJ. 2000. Zinc-regulated ubiquitin conjugation signals endocytosis of the yeast ZRT1 zinc transporter. Biochem J 346: 329- 36.
    • (2000) Biochem J , vol.346 , pp. 329-336
    • Gitan, R.S.1    Eide, D.J.2
  • 12
    • 34548546480 scopus 로고    scopus 로고
    • Regulation of copper-dependent endocytosis and vacuolar degradation of the yeast copper transporter, Ctr1p, by the Rsp5 ubiquitin ligase
    • Liu J, Sitaram A, Burd CG. 2007. Regulation of copper-dependent endocytosis and vacuolar degradation of the yeast copper transporter, Ctr1p, by the Rsp5 ubiquitin ligase. Traffic 8: 1375- 84.
    • (2007) Traffic , vol.8 , pp. 1375-1384
    • Liu, J.1    Sitaram, A.2    Burd, C.G.3
  • 13
    • 47649108312 scopus 로고    scopus 로고
    • Substrate- and ubiquitin-dependent trafficking of the yeast siderophore transporter Sit1
    • Erpapazoglou Z, Froissard M, Nondier I, Lesuisse E, et al. 2008. Substrate- and ubiquitin-dependent trafficking of the yeast siderophore transporter Sit1. Traffic 9: 1372- 91.
    • (2008) Traffic , vol.9 , pp. 1372-1391
    • Erpapazoglou, Z.1    Froissard, M.2    Nondier, I.3    Lesuisse, E.4
  • 14
    • 0037099702 scopus 로고    scopus 로고
    • Ferrichrome induces endosome to plasma membrane cycling of the ferrichrome transporter, Arn1p, in Saccharomyces cerevisiae
    • Kim Y, Yun CW, Philpott CC. 2002. Ferrichrome induces endosome to plasma membrane cycling of the ferrichrome transporter, Arn1p, in Saccharomyces cerevisiae EMBO J 21: 3632- 42.
    • (2002) EMBO J , vol.21 , pp. 3632-3642
    • Kim, Y.1    Yun, C.W.2    Philpott, C.C.3
  • 15
    • 0032835137 scopus 로고    scopus 로고
    • Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae
    • Thevelein JM, de Winde JH. 1999. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae Mol Microbiol 33: 904- 18.
    • (1999) Mol Microbiol , vol.33 , pp. 904-918
    • Thevelein, J.M.1    de Winde, J.H.2
  • 16
    • 0242437856 scopus 로고    scopus 로고
    • The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae
    • Donaton MC, Holsbeeks I, Lagatie O, Van Zeebroeck G, et al. 2003. The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae Mol Microbiol 50: 911- 29.
    • (2003) Mol Microbiol , vol.50 , pp. 911-929
    • Donaton, M.C.1    Holsbeeks, I.2    Lagatie, O.3    Van Zeebroeck, G.4
  • 17
    • 57749119180 scopus 로고    scopus 로고
    • Transport and signaling via the amino acid binding site of the yeast Gap1 amino acid transceptor
    • Van Zeebroeck G, Bonini BM, Versele M, Thevelein JM. 2009. Transport and signaling via the amino acid binding site of the yeast Gap1 amino acid transceptor. Nat Chem Biol 5: 45- 52.
    • (2009) Nat Chem Biol , vol.5 , pp. 45-52
    • Van Zeebroeck, G.1    Bonini, B.M.2    Versele, M.3    Thevelein, J.M.4
  • 18
    • 0037328986 scopus 로고    scopus 로고
    • Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae
    • Giots F, Donaton MC, Thevelein JM. 2003. Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae Mol Microbiol 47: 1163- 81.
    • (2003) Mol Microbiol , vol.47 , pp. 1163-1181
    • Giots, F.1    Donaton, M.C.2    Thevelein, J.M.3
  • 19
    • 77649249654 scopus 로고    scopus 로고
    • Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor
    • Popova Y, Thayumanavan P, Lonati E, Agrochao M, et al. 2010. Transport and signaling through the phosphate-binding site of the yeast Pho84 phosphate transceptor. Proc Natl Acad Sci USA 107: 2890- 5.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 2890-2895
    • Popova, Y.1    Thayumanavan, P.2    Lonati, E.3    Agrochao, M.4
  • 20
    • 33645047174 scopus 로고    scopus 로고
    • Ammonium permease-based sensing mechanism for rapid ammonium activation of the protein kinase A pathway in yeast
    • Van Nuland A, Vandormael P, Donaton M, Alenquer M, et al. 2006. Ammonium permease-based sensing mechanism for rapid ammonium activation of the protein kinase A pathway in yeast. Mol Microbiol 59: 1485- 505.
    • (2006) Mol Microbiol , vol.59 , pp. 1485-1505
    • Van Nuland, A.1    Vandormael, P.2    Donaton, M.3    Alenquer, M.4
  • 23
    • 65649152957 scopus 로고    scopus 로고
    • Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling
    • Hundal HS, Taylor PM. 2009. Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling. Am J Physiol Endocrinol Metab 296: E603- 13.
    • (2009) Am J Physiol Endocrinol Metab , vol.296
    • Hundal, H.S.1    Taylor, P.M.2
  • 24
    • 79551657318 scopus 로고    scopus 로고
    • The multiple plant response to high ammonium conditions: the Lotus japonicus AMT1;3 protein acts as a putative transceptor
    • Rogato A, D'Apuzzo E, Chiurazzi M. 2010. The multiple plant response to high ammonium conditions: the Lotus japonicus AMT1;3 protein acts as a putative transceptor. Plant Signal Behav 5: 1594- 6.
    • (2010) Plant Signal Behav , vol.5 , pp. 1594-1596
    • Rogato, A.1    D'Apuzzo, E.2    Chiurazzi, M.3
  • 25
    • 77950836551 scopus 로고    scopus 로고
    • Detection of extracellular glucose by GLUT2 contributes to hypothalamic control of food intake
    • Stolarczyk E, Guissard C, Michau A, Even PC, et al. 2010. Detection of extracellular glucose by GLUT2 contributes to hypothalamic control of food intake. Am J Physiol Endocrinol Metab 298: E1078- 87.
    • (2010) Am J Physiol Endocrinol Metab , vol.298
    • Stolarczyk, E.1    Guissard, C.2    Michau, A.3    Even, P.C.4
  • 26
    • 80052417830 scopus 로고    scopus 로고
    • A split-ubiquitin two-hybrid screen for proteins physically interacting with the yeast amino acid transceptor Gap1 and ammonium transceptor Mep2
    • in press.
    • Van Zeebroeck G, Kimpe M, Vandormael P, Thevelein JM. 2011. A split-ubiquitin two-hybrid screen for proteins physically interacting with the yeast amino acid transceptor Gap1 and ammonium transceptor Mep2. PLoS One, in press.
    • (2011) PLoS One
    • Van Zeebroeck, G.1    Kimpe, M.2    Vandormael, P.3    Thevelein, J.M.4
  • 27
    • 80052360038 scopus 로고    scopus 로고
    • The Candida albicans GAP gene family encodes permeases involved in general and specific amino-acid uptake and sensing
    • Kraidlova L, Van Zeebroeck G, Van Dijck P, Sychrova H. 2011. The Candida albicans GAP gene family encodes permeases involved in general and specific amino-acid uptake and sensing. Eukaryot Cell 10: 1219- 29.
    • (2011) Eukaryot Cell , vol.10 , pp. 1219-1229
    • Kraidlova, L.1    Van Zeebroeck, G.2    Van Dijck, P.3    Sychrova, H.4
  • 28
    • 0027989473 scopus 로고
    • Activation of trehalase during growth induction by nitrogen sources in the yeast Saccharomyces cerevisiae depends on the free catalytic subunits of cAMP-dependent protein kinase, but not on functional Ras proteins
    • Durnez P, Pernambuco MB, Oris E, Arguelles JC, et al. 1994. Activation of trehalase during growth induction by nitrogen sources in the yeast Saccharomyces cerevisiae depends on the free catalytic subunits of cAMP-dependent protein kinase, but not on functional Ras proteins. Yeast 10: 1049- 64.
    • (1994) Yeast , vol.10 , pp. 1049-1064
    • Durnez, P.1    Pernambuco, M.B.2    Oris, E.3    Arguelles, J.C.4
  • 29
    • 0026713757 scopus 로고
    • Nutrient-induced activation of trehalase in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger
    • Hirimburegama K, Durnez P, Keleman J, Oris E, et al. 1992. Nutrient-induced activation of trehalase in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger. J Gen Microbiol 138: 2035- 43.
    • (1992) J Gen Microbiol , vol.138 , pp. 2035-2043
    • Hirimburegama, K.1    Durnez, P.2    Keleman, J.3    Oris, E.4
  • 30
    • 0030850943 scopus 로고    scopus 로고
    • The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway
    • Crauwels M, Donaton MC, Pernambuco MB, Winderickx J, et al. 1997. The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway. Microbiology 143: 2627- 37.
    • (1997) Microbiology , vol.143 , pp. 2627-2637
    • Crauwels, M.1    Donaton, M.C.2    Pernambuco, M.B.3    Winderickx, J.4
  • 31
    • 0032080298 scopus 로고    scopus 로고
    • Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae
    • Özcan S, Dover J, Johnston M. 1998. Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae EMBO J 17: 2566- 73.
    • (1998) EMBO J , vol.17 , pp. 2566-2573
    • Özcan, S.1    Dover, J.2    Johnston, M.3
  • 32
    • 0031963197 scopus 로고    scopus 로고
    • The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae
    • Didion T, Regenberg B, Jorgensen MU, Kielland-Brandt MC, et al. 1998. The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae Mol Microbiol 27: 643- 50.
    • (1998) Mol Microbiol , vol.27 , pp. 643-650
    • Didion, T.1    Regenberg, B.2    Jorgensen, M.U.3    Kielland-Brandt, M.C.4
  • 33
    • 0032962927 scopus 로고    scopus 로고
    • Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease
    • Iraqui I, Vissers S, Bernard F, de Craene JO, et al. 1999. Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol Cell Biol 19: 989- 1001.
    • (1999) Mol Cell Biol , vol.19 , pp. 989-1001
    • Iraqui, I.1    Vissers, S.2    Bernard, F.3    de Craene, J.O.4
  • 34
    • 0032778041 scopus 로고    scopus 로고
    • Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids
    • Klasson H, Fink GR, Ljungdahl PO. 1999. Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol Cell Biol 19: 5405- 16.
    • (1999) Mol Cell Biol , vol.19 , pp. 5405-5416
    • Klasson, H.1    Fink, G.R.2    Ljungdahl, P.O.3
  • 35
    • 77954101739 scopus 로고    scopus 로고
    • Conditions with high intracellular glucose inhibit sensing through glucose sensor Snf3 in Saccharomyces cerevisiae
    • Karhumaa K, Wu B, Kielland-Brandt MC. 2010. Conditions with high intracellular glucose inhibit sensing through glucose sensor Snf3 in Saccharomyces cerevisiae J Cell Biochem 110: 920- 5.
    • (2010) J Cell Biochem , vol.110 , pp. 920-925
    • Karhumaa, K.1    Wu, B.2    Kielland-Brandt, M.C.3
  • 36
    • 33646397570 scopus 로고    scopus 로고
    • Competitive intra- and extracellular nutrient sensing by the transporter homologue Ssy1p
    • Wu B, Ottow K, Poulsen P, Gaber RF, et al. 2006. Competitive intra- and extracellular nutrient sensing by the transporter homologue Ssy1p. J Cell Biol 173: 327- 31.
    • (2006) J Cell Biol , vol.173 , pp. 327-331
    • Wu, B.1    Ottow, K.2    Poulsen, P.3    Gaber, R.F.4
  • 37
    • 0032750741 scopus 로고    scopus 로고
    • Nitrogen catabolite repression in Saccharomyces cerevisiae
    • Hofman-Bang J. 1999. Nitrogen catabolite repression in Saccharomyces cerevisiae Mol Biotechnol 12: 35- 73.
    • (1999) Mol Biotechnol , vol.12 , pp. 35-73
    • Hofman-Bang, J.1
  • 38
    • 0033955802 scopus 로고    scopus 로고
    • The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae
    • ter Schure EG, van Riel NA, Verrips CT. 2000. The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae FEMS Microbiol Rev 24: 67- 83.
    • (2000) FEMS Microbiol Rev , vol.24 , pp. 67-83
    • ter Schure, E.G.1    van Riel, N.A.2    Verrips, C.T.3
  • 39
    • 0037094434 scopus 로고    scopus 로고
    • Nitrogen regulation in Saccharomyces cerevisiae
    • Magasanik B, Kaiser CA. 2002. Nitrogen regulation in Saccharomyces cerevisiae Gene 290: 1- 18.
    • (2002) Gene , vol.290 , pp. 1-18
    • Magasanik, B.1    Kaiser, C.A.2
  • 40
    • 0014853512 scopus 로고
    • Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease
    • Grenson M, Hou C, Crabeel M. 1970. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J Bacteriol 103: 770- 7.
    • (1970) J Bacteriol , vol.103 , pp. 770-777
    • Grenson, M.1    Hou, C.2    Crabeel, M.3
  • 41
    • 0347694715 scopus 로고    scopus 로고
    • Yeast Agp2p and Agp3p function as amino acid permeases in poor nutrient conditions
    • Schreve JL, Garrett JM. 2004. Yeast Agp2p and Agp3p function as amino acid permeases in poor nutrient conditions. Biochem Biophys Res Commun 313: 745- 51.
    • (2004) Biochem Biophys Res Commun , vol.313 , pp. 745-751
    • Schreve, J.L.1    Garrett, J.M.2
  • 42
    • 0030903370 scopus 로고    scopus 로고
    • The branched-chain amino acid permease gene of Saccharomyces cerevisiae, BAP2, encodes the high-affinity leucine permease (S1)
    • Schreve J, Garrett JM. 1997. The branched-chain amino acid permease gene of Saccharomyces cerevisiae, BAP2, encodes the high-affinity leucine permease (S1). Yeast 13: 435- 9.
    • (1997) Yeast , vol.13 , pp. 435-439
    • Schreve, J.1    Garrett, J.M.2
  • 43
    • 0029785647 scopus 로고    scopus 로고
    • GNP1, the high-affinity glutamine permease of S. cerevisiae
    • Zhu X, Garrett J, Schreve J, Michaeli T. 1996. GNP1, the high-affinity glutamine permease of S. cerevisiae Curr Genet 30: 107- 14.
    • (1996) Curr Genet , vol.30 , pp. 107-114
    • Zhu, X.1    Garrett, J.2    Schreve, J.3    Michaeli, T.4
  • 44
    • 0033396550 scopus 로고    scopus 로고
    • Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae
    • Regenberg B, During-Olsen L, Kielland-Brandt MC, Holmberg S. 1999. Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae Curr Genet 36: 317- 28.
    • (1999) Curr Genet , vol.36 , pp. 317-328
    • Regenberg, B.1    During-Olsen, L.2    Kielland-Brandt, M.C.3    Holmberg, S.4
  • 45
    • 73349092148 scopus 로고    scopus 로고
    • Functioning and evolutionary significance of nutrient transceptors
    • Thevelein JM, Voordeckers K. 2009. Functioning and evolutionary significance of nutrient transceptors. Mol Biol Evol 26: 2407- 14.
    • (2009) Mol Biol Evol , vol.26 , pp. 2407-2414
    • Thevelein, J.M.1    Voordeckers, K.2
  • 46
    • 0030994642 scopus 로고    scopus 로고
    • A C-terminal di-leucine motif and nearby sequences are required for NH4(+)-induced inactivation and degradation of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae
    • Hein C, Andre B. 1997. A C-terminal di-leucine motif and nearby sequences are required for NH4(+)-induced inactivation and degradation of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae Mol Microbiol 24: 607- 16.
    • (1997) Mol Microbiol , vol.24 , pp. 607-616
    • Hein, C.1    Andre, B.2
  • 47
    • 59749083485 scopus 로고    scopus 로고
    • Amino-acid-induced signaling via the SPS-sensing pathway in yeast
    • Ljungdahl PO. 2009. Amino-acid-induced signaling via the SPS-sensing pathway in yeast. Biochem Soc Trans 37: 242- 7.
    • (2009) Biochem Soc Trans , vol.37 , pp. 242-247
    • Ljungdahl, P.O.1
  • 48
    • 0035941266 scopus 로고    scopus 로고
    • The Npr1 kinase controls biosynthetic and endocytic sorting of the yeast Gap1 permease
    • De Craene JO, Soetens O, Andre B. 2001. The Npr1 kinase controls biosynthetic and endocytic sorting of the yeast Gap1 permease. J Biol Chem 276: 43939- 48.
    • (2001) J Biol Chem , vol.276 , pp. 43939-43948
    • De Craene, J.O.1    Soetens, O.2    Andre, B.3
  • 49
    • 33749467954 scopus 로고    scopus 로고
    • Activity-dependent reversible inactivation of the general amino acid permease
    • Risinger AL, Cain NE, Chen EJ, Kaiser CA. 2006. Activity-dependent reversible inactivation of the general amino acid permease. Mol Biol Cell 17: 4411- 9.
    • (2006) Mol Biol Cell , vol.17 , pp. 4411-4419
    • Risinger, A.L.1    Cain, N.E.2    Chen, E.J.3    Kaiser, C.A.4
  • 50
    • 0032947192 scopus 로고    scopus 로고
    • Threonine overproduction in yeast strains carrying the HOM3-R2 mutant allele under the control of different inducible promoters
    • Farfan MJ, Aparicio L, Calderon IL. 1999. Threonine overproduction in yeast strains carrying the HOM3-R2 mutant allele under the control of different inducible promoters. Appl Environ Microbiol 65: 110- 6.
    • (1999) Appl Environ Microbiol , vol.65 , pp. 110-116
    • Farfan, M.J.1    Aparicio, L.2    Calderon, I.L.3
  • 51
    • 0001834173 scopus 로고
    • Amino acid production in microbial eukaryotes and prokaryotes other than coryneforms
    • In BanmBerg S, Hunter I, Rhodes M, eds; Cambridge, UK: Cambridge University Press
    • Niederberger P. 1989. Amino acid production in microbial eukaryotes and prokaryotes other than coryneforms. In BanmBerg S, Hunter I, Rhodes M, eds; Society for General Microbiology Symposium 44. Cambridge, UK: Cambridge University Press. p 1- 24.
    • (1989) Society for General Microbiology Symposium 44 , pp. 1-24
    • Niederberger, P.1
  • 52
    • 0037004761 scopus 로고    scopus 로고
    • Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae
    • Morita Y, Nakamori S, Takagi H. 2002. Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae J Biosci Bioeng 94: 390- 4.
    • (2002) J Biosci Bioeng , vol.94 , pp. 390-394
    • Morita, Y.1    Nakamori, S.2    Takagi, H.3
  • 53
    • 76149094527 scopus 로고    scopus 로고
    • Proline transport and stress tolerance of ammonia-insensitive mutants of the PUT4-encoded proline-specific permease in yeast
    • Poole K, Walker ME, Warren T, Gardner J, et al. 2009. Proline transport and stress tolerance of ammonia-insensitive mutants of the PUT4-encoded proline-specific permease in yeast. J Gen Appl Microbiol 55: 427- 39.
    • (2009) J Gen Appl Microbiol , vol.55 , pp. 427-439
    • Poole, K.1    Walker, M.E.2    Warren, T.3    Gardner, J.4
  • 54
    • 55649090079 scopus 로고    scopus 로고
    • Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications
    • Takagi H. 2008. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81: 211- 23.
    • (2008) Appl Microbiol Biotechnol , vol.81 , pp. 211-223
    • Takagi, H.1
  • 55
    • 0036341207 scopus 로고    scopus 로고
    • Signal transduction and endocytosis: close encounters of many kinds
    • Sorkin A, Von Zastrow M. 2002. Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 3: 600- 14.
    • (2002) Nat Rev Mol Cell Biol , vol.3 , pp. 600-614
    • Sorkin, A.1    Von Zastrow, M.2
  • 56
    • 0025253769 scopus 로고
    • The function of ras genes in Saccharomyces cerevisiae
    • Broach JR, Deschenes RJ. 1990. The function of ras genes in Saccharomyces cerevisiae Adv Cancer Res 54: 79- 139.
    • (1990) Adv Cancer Res , vol.54 , pp. 79-139
    • Broach, J.R.1    Deschenes, R.J.2
  • 57
    • 0000495120 scopus 로고
    • RAS genes in the budding yeast Saccharomyces cerevisiae
    • In Kurjan J, Taylor BJ, eds; San Diego: Academic Press
    • Tatchell K. 1993. RAS genes in the budding yeast Saccharomyces cerevisiae In Kurjan J, Taylor BJ, eds; Signal Transduction Prokaryotic and Simple Eukaryotic Systems. San Diego: Academic Press. pp. 147- 188.
    • (1993) Signal Transduction Prokaryotic and Simple Eukaryotic Systems , pp. 147-188
    • Tatchell, K.1
  • 58
    • 0026707805 scopus 로고
    • The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae
    • Thevelein JM. 1992. The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae Antonie Van Leeuwenhoek 62: 109- 30.
    • (1992) Antonie Van Leeuwenhoek , vol.62 , pp. 109-130
    • Thevelein, J.M.1
  • 60
    • 33747792380 scopus 로고    scopus 로고
    • Actin-induced hyperactivation of the Ras signaling pathway leads to apoptosis in Saccharomyces cerevisiae
    • Gourlay CW, Ayscough KR. 2006. Actin-induced hyperactivation of the Ras signaling pathway leads to apoptosis in Saccharomyces cerevisiae Mol Cell Biol 26: 6487- 501.
    • (2006) Mol Cell Biol , vol.26 , pp. 6487-6501
    • Gourlay, C.W.1    Ayscough, K.R.2
  • 61
    • 0028876606 scopus 로고
    • Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae
    • Stanbrough M, Magasanik B. 1995. Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae J Bacteriol 177: 94- 102.
    • (1995) J Bacteriol , vol.177 , pp. 94-102
    • Stanbrough, M.1    Magasanik, B.2
  • 62
    • 0037235442 scopus 로고    scopus 로고
    • Constitutive cycling: a general mechanism to regulate cell surface proteins
    • Royle SJ, Murrell-Lagnado RD. 2003. Constitutive cycling: a general mechanism to regulate cell surface proteins. BioEssays 25: 39- 46.
    • (2003) BioEssays , vol.25 , pp. 39-46
    • Royle, S.J.1    Murrell-Lagnado, R.D.2
  • 63
    • 0037069414 scopus 로고    scopus 로고
    • Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomyces cerevisiae
    • Chen EJ, Kaiser CA. 2002. Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomyces cerevisiae Proc Natl Acad Sci USA 99: 14837- 42.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 14837-14842
    • Chen, E.J.1    Kaiser, C.A.2
  • 64
    • 0347379848 scopus 로고    scopus 로고
    • Permease recycling and ubiquitination status reveal a particular role for Bro1 in the multivesicular body pathway
    • Nikko E, Marini AM, Andre B. 2003. Permease recycling and ubiquitination status reveal a particular role for Bro1 in the multivesicular body pathway. J Biol Chem 278: 50732- 43.
    • (2003) J Biol Chem , vol.278 , pp. 50732-50743
    • Nikko, E.1    Marini, A.M.2    Andre, B.3
  • 65
    • 33745745910 scopus 로고    scopus 로고
    • A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast
    • Gao M, Kaiser CA. 2006. A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast. Nat Cell Biol 8: 657- 67.
    • (2006) Nat Cell Biol , vol.8 , pp. 657-667
    • Gao, M.1    Kaiser, C.A.2
  • 66
    • 77958046490 scopus 로고    scopus 로고
    • Alpha-arrestins Aly1 and Aly2 regulate intracellular trafficking in response to nutrient signaling
    • O'Donnell AF, Apffel A, Gardner RG, Cyert MS. 2010. Alpha-arrestins Aly1 and Aly2 regulate intracellular trafficking in response to nutrient signaling. Mol Biol Cell 21: 3552- 66.
    • (2010) Mol Biol Cell , vol.21 , pp. 3552-3566
    • O'Donnell, A.F.1    Apffel, A.2    Gardner, R.G.3    Cyert, M.S.4
  • 67
    • 0030809956 scopus 로고    scopus 로고
    • Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8
    • Roberg KJ, Bickel S, Rowley N, Kaiser CA. 1997. Control of amino acid permease sorting in the late secretory pathway of Saccharomyces cerevisiae by SEC13, LST4, LST7 and LST8. Genetics 147: 1569- 84.
    • (1997) Genetics , vol.147 , pp. 1569-1584
    • Roberg, K.J.1    Bickel, S.2    Rowley, N.3    Kaiser, C.A.4
  • 68
    • 11144225699 scopus 로고    scopus 로고
    • GGA proteins bind ubiquitin to facilitate sorting at the trans-Golgi network
    • Scott PM, Bilodeau PS, Zhdankina O, Winistorfer SC, et al. 2004. GGA proteins bind ubiquitin to facilitate sorting at the trans-Golgi network. Nat Cell Biol 6: 252- 9.
    • (2004) Nat Cell Biol , vol.6 , pp. 252-259
    • Scott, P.M.1    Bilodeau, P.S.2    Zhdankina, O.3    Winistorfer, S.C.4
  • 69
    • 0036270751 scopus 로고    scopus 로고
    • Regulated transport of the glucose transporter GLUT4
    • Bryant NJ, Govers R, James DE. 2002. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3: 267- 77.
    • (2002) Nat Rev Mol Cell Biol , vol.3 , pp. 267-277
    • Bryant, N.J.1    Govers, R.2    James, D.E.3
  • 70
    • 78649463115 scopus 로고    scopus 로고
    • Endosomal signaling and a novel pathway defined by the natural killer receptor KIR2DL4 (CD158d)
    • Rajagopalan S. 2010. Endosomal signaling and a novel pathway defined by the natural killer receptor KIR2DL4 (CD158d). Traffic 11: 1381- 90.
    • (2010) Traffic , vol.11 , pp. 1381-1390
    • Rajagopalan, S.1
  • 71
    • 39049149021 scopus 로고    scopus 로고
    • Amino acid transport through the Saccharomyces cerevisiae Gap1 permease is controlled by the Ras/cAMP pathway
    • Garrett JM. 2008. Amino acid transport through the Saccharomyces cerevisiae Gap1 permease is controlled by the Ras/cAMP pathway. Int J Biochem Cell Biol 40: 496- 502.
    • (2008) Int J Biochem Cell Biol , vol.40 , pp. 496-502
    • Garrett, J.M.1
  • 72
    • 0028971506 scopus 로고
    • NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase
    • Hein C, Springael JY, Volland C, Haguenauer-Tsapis R, et al. 1995. NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol Microbiol 18: 77- 87.
    • (1995) Mol Microbiol , vol.18 , pp. 77-87
    • Hein, C.1    Springael, J.Y.2    Volland, C.3    Haguenauer-Tsapis, R.4
  • 73
    • 0035858866 scopus 로고    scopus 로고
    • Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease
    • Helliwell SB, Losko S, Kaiser CA. 2001. Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J Cell Biol 153: 649- 62.
    • (2001) J Cell Biol , vol.153 , pp. 649-662
    • Helliwell, S.B.1    Losko, S.2    Kaiser, C.A.3
  • 74
    • 0037164807 scopus 로고    scopus 로고
    • Concentrative sorting of secretory cargo proteins into COPII-coated vesicles
    • Malkus P, Jiang F, Schekman R. 2002. Concentrative sorting of secretory cargo proteins into COPII-coated vesicles. J Cell Biol 159: 915- 21.
    • (2002) J Cell Biol , vol.159 , pp. 915-921
    • Malkus, P.1    Jiang, F.2    Schekman, R.3
  • 75
    • 79955454220 scopus 로고    scopus 로고
    • Systematic mutational analysis of the intracellular regions of yeast Gap1 permease
    • Merhi A, Gerard N, Lauwers E, Prevost M, et al. 2011. Systematic mutational analysis of the intracellular regions of yeast Gap1 permease. PLoS One 6: e18457.
    • (2011) PLoS One , vol.6
    • Merhi, A.1    Gerard, N.2    Lauwers, E.3    Prevost, M.4
  • 76
    • 51349159616 scopus 로고    scopus 로고
    • Different ubiquitin signals act at the Golgi and plasma membrane to direct GAP1 trafficking
    • Risinger AL, Kaiser CA. 2008. Different ubiquitin signals act at the Golgi and plasma membrane to direct GAP1 trafficking. Mol Biol Cell 19: 2962- 72.
    • (2008) Mol Biol Cell , vol.19 , pp. 2962-2972
    • Risinger, A.L.1    Kaiser, C.A.2
  • 77
    • 33646899047 scopus 로고    scopus 로고
    • Global analysis of protein palmitoylation in yeast
    • Roth AF, Wan J, Bailey AO, Sun B, et al. 2006. Global analysis of protein palmitoylation in yeast. Cell 125: 1003- 13.
    • (2006) Cell , vol.125 , pp. 1003-1013
    • Roth, A.F.1    Wan, J.2    Bailey, A.O.3    Sun, B.4
  • 78
    • 0033967340 scopus 로고    scopus 로고
    • Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae, is required for ER exit of the high-affinity phosphate transporter Pho84p
    • Lau WT, Howson RW, Malkus P, Schekman R, et al. 2000. Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae, is required for ER exit of the high-affinity phosphate transporter Pho84p. Proc Natl Acad Sci USA 97: 1107- 12.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 1107-1112
    • Lau, W.T.1    Howson, R.W.2    Malkus, P.3    Schekman, R.4
  • 79
    • 66349086108 scopus 로고    scopus 로고
    • Molecular mechanisms controlling phosphate-induced downregulation of the yeast Pho84 phosphate transporter
    • Lundh F, Mouillon JM, Samyn D, Stadler K, et al. 2009. Molecular mechanisms controlling phosphate-induced downregulation of the yeast Pho84 phosphate transporter. Biochemistry 48: 4497- 505.
    • (2009) Biochemistry , vol.48 , pp. 4497-4505
    • Lundh, F.1    Mouillon, J.M.2    Samyn, D.3    Stadler, K.4
  • 80
    • 33645854348 scopus 로고    scopus 로고
    • Role of ubiquitylation in cellular membrane transport
    • Staub O, Rotin D. 2006. Role of ubiquitylation in cellular membrane transport. Physiol Rev 86: 669- 707.
    • (2006) Physiol Rev , vol.86 , pp. 669-707
    • Staub, O.1    Rotin, D.2
  • 81
    • 0742288015 scopus 로고    scopus 로고
    • Direct sorting of the yeast uracil permease to the endosomal system is controlled by uracil binding and Rsp5p-dependent ubiquitylation
    • Blondel MO, Morvan J, Dupre S, Urban-Grimal D, et al. 2004. Direct sorting of the yeast uracil permease to the endosomal system is controlled by uracil binding and Rsp5p-dependent ubiquitylation. Mol Biol Cell 15: 883- 95.
    • (2004) Mol Biol Cell , vol.15 , pp. 883-895
    • Blondel, M.O.1    Morvan, J.2    Dupre, S.3    Urban-Grimal, D.4
  • 83
    • 72949088410 scopus 로고    scopus 로고
    • Transport-dependent endocytosis and turnover of a uric acid-xanthine permease
    • Gournas C, Amillis S, Vlanti A, Diallinas G. 2010. Transport-dependent endocytosis and turnover of a uric acid-xanthine permease. Mol Microbiol 75: 246- 60.
    • (2010) Mol Microbiol , vol.75 , pp. 246-260
    • Gournas, C.1    Amillis, S.2    Vlanti, A.3    Diallinas, G.4
  • 84
    • 0028307059 scopus 로고
    • Endocytosis and degradation of the yeast uracil permease under adverse conditions
    • Volland C, Urban-Grimal D, Geraud G, Haguenauer-Tsapis R. 1994. Endocytosis and degradation of the yeast uracil permease under adverse conditions. J Biol Chem 269: 9833- 41.
    • (1994) J Biol Chem , vol.269 , pp. 9833-9841
    • Volland, C.1    Urban-Grimal, D.2    Geraud, G.3    Haguenauer-Tsapis, R.4
  • 85
    • 0033540030 scopus 로고    scopus 로고
    • The TOR signaling pathway controls nuclear localization of nutrient-regulated transcription factors
    • Beck T, Hall MN. 1999. The TOR signaling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402: 689- 92.
    • (1999) Nature , vol.402 , pp. 689-692
    • Beck, T.1    Hall, M.N.2
  • 86
    • 0031055949 scopus 로고    scopus 로고
    • Catabolite inactivation of the yeast maltose transporter requires ubiquitin-ligase npi1/rsp5 and ubiquitin-hydrolase npi2/doa4
    • Lucero P, Lagunas R. 1997. Catabolite inactivation of the yeast maltose transporter requires ubiquitin-ligase npi1/rsp5 and ubiquitin-hydrolase npi2/doa4. FEMS Microbiol Lett 147: 273- 7.
    • (1997) FEMS Microbiol Lett , vol.147 , pp. 273-277
    • Lucero, P.1    Lagunas, R.2
  • 87
    • 0037189949 scopus 로고    scopus 로고
    • Mutagenic and functional analysis of the C-terminus of Saccharomyces cerevisiae Pho84 phosphate transporter
    • Lagerstedt JO, Zvyagilskaya R, Pratt JR, Pattison-Granberg J, et al. 2002. Mutagenic and functional analysis of the C-terminus of Saccharomyces cerevisiae Pho84 phosphate transporter. FEBS Lett 526: 31- 7.
    • (2002) FEBS Lett , vol.526 , pp. 31-37
    • Lagerstedt, J.O.1    Zvyagilskaya, R.2    Pratt, J.R.3    Pattison-Granberg, J.4
  • 88
    • 34547124353 scopus 로고    scopus 로고
    • Distinct sensor pathways in the hierarchical control of SNAT2, a putative amino acid transceptor, by amino acid availability
    • Hyde R, Cwiklinski EL, MacAulay K, Taylor PM, et al. 2007. Distinct sensor pathways in the hierarchical control of SNAT2, a putative amino acid transceptor, by amino acid availability. J Biol Chem 282: 19788- 98.
    • (2007) J Biol Chem , vol.282 , pp. 19788-19798
    • Hyde, R.1    Cwiklinski, E.L.2    MacAulay, K.3    Taylor, P.M.4
  • 89
    • 21044440310 scopus 로고    scopus 로고
    • PAT-related amino acid transporters regulate growth via a novel mechanism that does not require bulk transport of amino acids
    • Goberdhan DC, Meredith D, Boyd CA, Wilson C. 2005. PAT-related amino acid transporters regulate growth via a novel mechanism that does not require bulk transport of amino acids. Development 132: 2365- 75.
    • (2005) Development , vol.132 , pp. 2365-2375
    • Goberdhan, D.C.1    Meredith, D.2    Boyd, C.A.3    Wilson, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.