메뉴 건너뛰기




Volumn , Issue , 2009, Pages 625-632

ABC-boost: Adaptive base class boost for multi-class classification

Author keywords

[No Author keywords available]

Indexed keywords

BASE CLASS; DATA SETS; MULTI-CLASS CLASSIFICATION; MULTINOMIAL LOGIT MODEL;

EID: 71149083876     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (38)

References (17)
  • 1
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • Allwein, E. L., Schapire, R. E., & Singer, Y. (2000). Reducing multiclass to binary: A unifying approach for margin classifiers. J. of Machine Learning Research, 1, 113-141.
    • (2000) J. of Machine Learning Research , vol.1 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 2
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Bartlett, P., Freund, Y., Lee, W. S., & Schapire, R. E. (1998). Boosting the margin: a new explanation for the effectiveness of voting methods. The Annals of Statistics, 26, 1651-1686.
    • (1998) The Annals of Statistics , vol.26 , pp. 1651-1686
    • Bartlett, P.1    Freund, Y.2    Lee, W.S.3    Schapire, R.E.4
  • 4
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund, Y. (1995). Boosting a weak learning algorithm by majority. Inf. Comput., 121, 256-285.
    • (1995) Inf. Comput , vol.121 , pp. 256-285
    • Freund, Y.1
  • 5
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci., 55, 119-139.
    • (1997) J. Comput. Syst. Sci , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 6
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29, 1189-1232.
    • (2001) The Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 7
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman, J. H., Hastie, T. J., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting. The Annals of Statistics, 28, 337-407.
    • (2000) The Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.J.2    Tibshirani, R.3
  • 8
    • 2142775432 scopus 로고    scopus 로고
    • Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data
    • Lee, Y., Lin, Y., & Wahba, G. (2004). Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data. J. of Amer. Stat. Asso., 99, 67-81.
    • (2004) J. of Amer. Stat. Asso , vol.99 , pp. 67-81
    • Lee, Y.1    Lin, Y.2    Wahba, G.3
  • 9
    • 85162006799 scopus 로고    scopus 로고
    • Mcrank: Learning to rank using classification and gradient boosting
    • Li, P., Burges, C. J., & Wu, Q. (2008). Mcrank: Learning to rank using classification and gradient boosting. Neur. Inf. Proc. Sys. Conf. 897-904.
    • (2008) Neur. Inf. Proc. Sys. Conf , pp. 897-904
    • Li, P.1    Burges, C.J.2    Wu, Q.3
  • 11
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R. (1990). The strength of weak learnability. Machine Learning, 5, 197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.1
  • 12
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37, 297-336.
    • (1999) Machine Learning , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 13
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: A boosting-based system for text categorization
    • Schapire, R. E., & Singer, Y. (2000). Boostexter: A boosting-based system for text categorization. Machine Learning, 39, 135-168.
    • (2000) Machine Learning , vol.39 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 14
    • 34249062309 scopus 로고    scopus 로고
    • On the consistency of multiclass classification methods
    • Tewari, A., & Bartlett, P. L. (2007). On the consistency of multiclass classification methods. J. of Machine Learning Research, 8, 1007-1025.
    • (2007) J. of Machine Learning Research , vol.8 , pp. 1007-1025
    • Tewari, A.1    Bartlett, P.L.2
  • 15
    • 26944483874 scopus 로고    scopus 로고
    • Statistical analysis of some multi-category large margin classification methods
    • Zhang, T. (2004). Statistical analysis of some multi-category large margin classification methods. J. of Machine Learning Research, 5, 1225-1251.
    • (2004) J. of Machine Learning Research , vol.5 , pp. 1225-1251
    • Zhang, T.1
  • 16
    • 85161963897 scopus 로고    scopus 로고
    • A General Boosting Method and its Application to Learning Ranking Functions for Web Search
    • Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Chen, K., Sun, G. (2008). A General Boosting Method and its Application to Learning Ranking Functions for Web Search Neur. Inf. Proc. Sys. Conf. 1697-1704.
    • (2008) Neur. Inf. Proc. Sys. Conf , pp. 1697-1704
    • Zheng, Z.1    Zha, H.2    Zhang, T.3    Chapelle, O.4    Chen, K.5    Sun, G.6
  • 17
    • 70049095487 scopus 로고    scopus 로고
    • New multi-category boosting algorithms based on multicategory fisher-consistent losses
    • Zou, H., Zhu, J., & Hastie, T. (2008). New multi-category boosting algorithms based on multicategory fisher-consistent losses. The Annals of Applied Statistics, 2, 1290-1306.
    • (2008) The Annals of Applied Statistics , vol.2 , pp. 1290-1306
    • Zou, H.1    Zhu, J.2    Hastie, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.