메뉴 건너뛰기




Volumn 6443 LNCS, Issue PART 1, 2010, Pages 551-558

Non-uniform layered clustering for ensemble classifier generation and optimality

Author keywords

ensemble classifier; genetic algorithm; optimal clustering

Indexed keywords

BASE CLASSIFIERS; CLUSTERING APPROACH; DATA SETS; ENSEMBLE CLASSIFIERS; ENSEMBLE OF CLASSIFIERS; GENERATION METHOD; LAYERED CLUSTERING; MAJORITY VOTING; NONUNIFORM; OPTIMAL CLUSTERING; OPTIMAL NUMBER; OPTIMALITY; VARIABLE NUMBER; VARIABLE NUMBER OF CLUSTERS;

EID: 78650180662     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-17537-4_67     Document Type: Conference Paper
Times cited : (11)

References (17)
  • 2
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51(2), 181-207 (2003)
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 3
    • 70349087319 scopus 로고    scopus 로고
    • The diversity of regression ensembles combining bagging and random subspace method
    • Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. Springer, Heidelberg
    • Scherbart, A., Nattkemper, T.W.: The diversity of regression ensembles combining bagging and random subspace method. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5507, pp. 911-918. Springer, Heidelberg (2009)
    • (2009) LNCS , vol.5507 , pp. 911-918
    • Scherbart, A.1    Nattkemper, T.W.2
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L.: Bagging predictors. Machine Learning 24(2), 123-140 (1996)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 58249090787 scopus 로고    scopus 로고
    • A generalized adaptive ensemble generation and aggregation approach for multiple classifiers systems
    • Chen, L., Kamel, M.S.: A generalized adaptive ensemble generation and aggregation approach for multiple classifiers systems. Pattern Recognition 42, 629-644 (2009)
    • (2009) Pattern Recognition , vol.42 , pp. 629-644
    • Chen, L.1    Kamel, M.S.2
  • 6
    • 29144474640 scopus 로고    scopus 로고
    • FuzzyBagging: A novel ensemble of classifiers
    • DOI 10.1016/j.patcog.2005.10.002, PII S0031320305003523
    • Nanni, L., Lumini, A.: Fuzzy bagging: a novel ensemble of classifiers. Pattern Recognition 39, 488-490 (2006) (Pubitemid 41808629)
    • (2006) Pattern Recognition , vol.39 , Issue.3 , pp. 488-490
    • Nanni, L.1    Lumini, A.2
  • 7
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R.E.: The strength of weak learnability. Machine Learning 5(2), 197-227 (1990)
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 8
    • 0031211090 scopus 로고    scopus 로고
    • Decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., Schapire, R.E.: Decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119-139 (1997)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 9
    • 58649083899 scopus 로고    scopus 로고
    • Learn++. NC: Combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes
    • Muhlbaier, M.D., Topalis, A., Polikar, R.: Learn++. NC: Combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes. IEEE Trans. on Neural Networks 20(1), 152-168 (2009)
    • (2009) IEEE Trans. on Neural Networks , vol.20 , Issue.1 , pp. 152-168
    • Muhlbaier, M.D.1    Topalis, A.2    Polikar, R.3
  • 10
    • 76649135491 scopus 로고    scopus 로고
    • Ensembling heterogeneous learning models with boosting
    • Leung, C.S., Lee, M., Chan, J.H. (eds.) ICONIP 2009. Springer, Heidelberg
    • Nascimento, D.S.C., Coelho, A.L.V.: Ensembling heterogeneous learning models with boosting. In: Leung, C.S., Lee, M., Chan, J.H. (eds.) ICONIP 2009. LNCS, vol. 5863, pp. 512-519. Springer, Heidelberg (2009)
    • (2009) LNCS , vol.5863 , pp. 512-519
    • Nascimento, D.S.C.1    Coelho, A.L.V.2
  • 12
    • 0036532571 scopus 로고    scopus 로고
    • Switching between selection and fusion in combining classifiers: An experiment
    • Kuncheva, L.I.: Switching between selection and fusion in combining classifiers: an experiment. IEEE Trans on Systems, Man and Cybernetics 32(2), 146-156 (2002)
    • (2002) IEEE Trans on Systems, Man and Cybernetics , vol.32 , Issue.2 , pp. 146-156
    • Kuncheva, L.I.1
  • 14
    • 70349153027 scopus 로고    scopus 로고
    • Initialization dependence of clustering algorithms
    • Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. Springer, Heidelberg
    • Mulder, W.D., Schliebs, S., Boel, R., Kuiper, M.: Initialization dependence of clustering algorithms. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5507, pp. 615-622. Springer, Heidelberg (2009)
    • (2009) LNCS , vol.5507 , pp. 615-622
    • Mulder, W.D.1    Schliebs, S.2    Boel, R.3    Kuiper, M.4
  • 17
    • 78650206261 scopus 로고    scopus 로고
    • LIBSVM
    • LIBSVM, http://www.csie.ntu.edu.tw/~cjlin/libsvm/


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.