메뉴 건너뛰기




Volumn 29, Issue 8, 2008, Pages 1049-1059

Boosting recombined weak classifiers

Author keywords

Boosting; Classifier ensembles; Decision stumps

Indexed keywords

COMPUTATIONAL COMPLEXITY; DECISION TREES; FEATURE EXTRACTION; PROBLEM SOLVING; STATISTICAL METHODS;

EID: 42049117782     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2007.06.019     Document Type: Article
Times cited : (50)

References (30)
  • 1
    • 42049104532 scopus 로고    scopus 로고
    • Blake, C.L., Merz, C.J., 1998. UCI repository of machine learning databases. http://www.ics.uci.edu/mlearn/MLRepository.html.
    • Blake, C.L., Merz, C.J., 1998. UCI repository of machine learning databases. http://www.ics.uci.edu/mlearn/MLRepository.html.
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 24 2 (1996) 123-140
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 45 1 (2001) 5-32
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 33749254096 scopus 로고    scopus 로고
    • Caruana, R., Niculescu-Mizil, A., 2006. An empirical comparison of supervised learning algorithms. In: ICML 2006: 23rd International Conference on Machine Learning.
    • Caruana, R., Niculescu-Mizil, A., 2006. An empirical comparison of supervised learning algorithms. In: ICML 2006: 23rd International Conference on Machine Learning.
  • 6
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006) 1-30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 7
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Mach. Learn. 40 2 (2000) 139-158
    • (2000) Mach. Learn. , vol.40 , Issue.2 , pp. 139-158
    • Dietterich, T.G.1
  • 8
    • 21844475408 scopus 로고    scopus 로고
    • Multiclass-boosting for weak classifiers
    • Eibl G., and Pfeiffer K.P. Multiclass-boosting for weak classifiers. J. Mach. Learn. Res. 6 (2005) 189-210
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 189-210
    • Eibl, G.1    Pfeiffer, K.P.2
  • 9
    • 42049113141 scopus 로고    scopus 로고
    • Estruch, V., Ferri, C., Hernández-Orallo, J., Ramírez-Quintana, M., 2003. Beam search extraction and forgetting strategies on shared ensembles. In: Multiple Classifier Systems, Fourth International Workshop, MCS 2003.
    • Estruch, V., Ferri, C., Hernández-Orallo, J., Ramírez-Quintana, M., 2003. Beam search extraction and forgetting strategies on shared ensembles. In: Multiple Classifier Systems, Fourth International Workshop, MCS 2003.
  • 10
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., and Scapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55 1 (1997) 119-139
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Scapire, R.E.2
  • 11
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman J., Hastie T., and Tibshirani R. Additive logistic regression: A statistical view of boosting. Ann. Stat. 38 2 (2000) 337-374
    • (2000) Ann. Stat. , vol.38 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 0033280008 scopus 로고    scopus 로고
    • Guruswami, V., Sahai, A., 1999. Multiclass learning, boosting, and error-correcting codes. In: Proceedings of the 12th Annual Conference on Computational Learning Theory (COLT 1999), ACM.
    • Guruswami, V., Sahai, A., 1999. Multiclass learning, boosting, and error-correcting codes. In: Proceedings of the 12th Annual Conference on Computational Learning Theory (COLT 1999), ACM.
  • 13
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20 8 (1998) 832-844
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 14
    • 42049103845 scopus 로고    scopus 로고
    • Kohavi, R., Kunz, C., 1997. Option decision trees with majority votes. In: Machine Learning Proceedings of the 14th International Conference.
    • Kohavi, R., Kunz, C., 1997. Option decision trees with majority votes. In: Machine Learning Proceedings of the 14th International Conference.
  • 16
    • 24144490154 scopus 로고    scopus 로고
    • Diversity in multiple classifier systems (editorial)
    • Kuncheva L. Diversity in multiple classifier systems (editorial). Inform. Fusion 6 1 (2005) 3-4
    • (2005) Inform. Fusion , vol.6 , Issue.1 , pp. 3-4
    • Kuncheva, L.1
  • 17
    • 33749252968 scopus 로고    scopus 로고
    • Li, L., 2006. Multiclass boosting with repartitioning. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006.
    • Li, L., 2006. Multiclass boosting with repartitioning. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006.
  • 18
    • 57849084709 scopus 로고    scopus 로고
    • Li, J., Liu, H., 2003. Ensembles of cascading trees. In: Proceedings of the Third IEEE International Conference on Data Mining (ICDM'03), pp. 585-588.
    • Li, J., Liu, H., 2003. Ensembles of cascading trees. In: Proceedings of the Third IEEE International Conference on Data Mining (ICDM'03), pp. 585-588.
  • 19
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • Nadeau C., and Bengio Y. Inference for the generalization error. Mach. Learn. 52 (2003) 239-281
    • (2003) Mach. Learn. , vol.52 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 20
    • 42049123833 scopus 로고    scopus 로고
    • Nock, R., Nielsen, F., 2006. A Real generalization of discrete adaboost. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (Eds.), ECAI-06, Proceedings of the 17th European Conference on Artificial Intelligence, vol. 141 of Frontiers in Artificial Intelligence and Applications. IOS Press.
    • Nock, R., Nielsen, F., 2006. A Real generalization of discrete adaboost. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (Eds.), ECAI-06, Proceedings of the 17th European Conference on Artificial Intelligence, vol. 141 of Frontiers in Artificial Intelligence and Applications. IOS Press.
  • 21
    • 33749262644 scopus 로고    scopus 로고
    • Reyzin, L., Schapire, R.E., 2006. How boosting the margin can also boost classifier complexity. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006.
    • Reyzin, L., Schapire, R.E., 2006. How boosting the margin can also boost classifier complexity. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006.
  • 22
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • Rifkin R., and Klautau A. In defense of one-vs-all classification. J. Mach. Learn. Res. 5 (2004) 101-141
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 23
    • 84886060508 scopus 로고    scopus 로고
    • Rodríguez, J.J., Maudes, J., 2006. Ensembles of grafted trees. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (Eds.), ECAI-06, Proceedings of the 17th European Conference on Artificial Intelligence, vol. 141 of Frontiers in Artificial Intelligence and Applications. IOS Press, pp. 803-804.
    • Rodríguez, J.J., Maudes, J., 2006. Ensembles of grafted trees. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (Eds.), ECAI-06, Proceedings of the 17th European Conference on Artificial Intelligence, vol. 141 of Frontiers in Artificial Intelligence and Applications. IOS Press, pp. 803-804.
  • 24
    • 33750095186 scopus 로고    scopus 로고
    • Rotation forest: A new classifier ensemble method
    • Rodríguez J.J., Kuncheva L.I., and Alonso C.J. Rotation forest: A new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28 10 (2006) 1619-1630. http://doi.ieeecomputersociety.org/10.1109/TPAMI.2006.2%11
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.10 , pp. 1619-1630
    • Rodríguez, J.J.1    Kuncheva, L.I.2    Alonso, C.J.3
  • 25
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R.E. The strength of weak learnability. Mach. Learn. 5 2 (1990) 197-227
    • (1990) Mach. Learn. , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 26
    • 42049117775 scopus 로고    scopus 로고
    • Schapire, R.E., 1997. Using output codes to boost multiclass learning problems. In: Proceedings of the 14th International Conference on Machine Learning (ICML-97). pp. 313-321.
    • Schapire, R.E., 1997. Using output codes to boost multiclass learning problems. In: Proceedings of the 14th International Conference on Machine Learning (ICML-97). pp. 313-321.
  • 27
    • 84880692052 scopus 로고    scopus 로고
    • Schapire, R.E., 1999. A brief introduction to boosting. In: Dean, T. (Ed.), Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI-99). Morgan Kaufmann, pp. 1401-1406.
    • Schapire, R.E., 1999. A brief introduction to boosting. In: Dean, T. (Ed.), Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI-99). Morgan Kaufmann, pp. 1401-1406.
  • 28
    • 42049105088 scopus 로고    scopus 로고
    • Schapire, R.E., 2002. The boosting approach to machine learning: An overview. In: MSRI Workshop on Nonlinear Estimation and Classification. http://www.cs.princeton.edu/schapire/papers/msri.ps.gz.
    • Schapire, R.E., 2002. The boosting approach to machine learning: An overview. In: MSRI Workshop on Nonlinear Estimation and Classification. http://www.cs.princeton.edu/schapire/papers/msri.ps.gz.
  • 29
    • 0031633979 scopus 로고    scopus 로고
    • Schapire, R.E., Singer, Y., 1998. Improved boosting algorithms using confidence-rated predictions. In: Proceedings of the 11th Annual Conference on Computational Learning Theory (COLT 1998), ACM. pp. 80-91.
    • Schapire, R.E., Singer, Y., 1998. Improved boosting algorithms using confidence-rated predictions. In: Proceedings of the 11th Annual Conference on Computational Learning Theory (COLT 1998), ACM. pp. 80-91.
  • 30
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D. Stacked generalization. Neural Network 5 2 (1992) 241-260
    • (1992) Neural Network , vol.5 , Issue.2 , pp. 241-260
    • Wolpert, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.