메뉴 건너뛰기




Volumn 20, Issue 1, 2009, Pages 152-168

Learn++ .NC: Combining ensemble of classifiers with dynamically weighted consult-and-vote for efficient incremental learning of new classes

Author keywords

Consult and vote majority voting; Incremental learning; Multiple classifier systems

Indexed keywords

CLASSIFIERS; EDUCATION; LEARNING ALGORITHMS;

EID: 58649083899     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2008.2008326     Document Type: Article
Times cited : (188)

References (72)
  • 1
    • 49949150022 scopus 로고
    • Language identification in the limit
    • May
    • E. M. Gold, "Language identification in the limit," Inf. Control vol. 10, no. 5, pp. 447-474, May 1967.
    • (1967) Inf. Control , vol.10 , Issue.5 , pp. 447-474
    • Gold, E.M.1
  • 2
    • 58649116521 scopus 로고    scopus 로고
    • K. Jantke, Types of incremental learning, in Proc. AAAI Symp. Training Issues Incremental Learn., 1993, SS-93-06, pp. 26-32.
    • K. Jantke, "Types of incremental learning," in Proc. AAAI Symp. Training Issues Incremental Learn., 1993, vol. SS-93-06, pp. 26-32.
  • 3
    • 0032090705 scopus 로고    scopus 로고
    • A note on batch and incremental learnability
    • Jun
    • A. Sharma, "A note on batch and incremental learnability," J. Comput. Syst. Sci., vol. 56, no. 3, pp. 272-276, Jun. 1998.
    • (1998) J. Comput. Syst. Sci , vol.56 , Issue.3 , pp. 272-276
    • Sharma, A.1
  • 4
    • 0037120726 scopus 로고    scopus 로고
    • On the power of incremental learning
    • Oct
    • S. Lange and G. Grieser, "On the power of incremental learning," Theor. Comput. Sci., vol. 288, no. 2, pp. 277-307, Oct. 2002.
    • (2002) Theor. Comput. Sci , vol.288 , Issue.2 , pp. 277-307
    • Lange, S.1    Grieser, G.2
  • 5
    • 0036832990 scopus 로고    scopus 로고
    • Hybrid decision tree
    • Nov
    • Z. H. Zhou and Z. Q. Chen, "Hybrid decision tree," Knowl.-Based Syst., vol. 15, no. 8, pp. 515-528, Nov. 2002.
    • (2002) Knowl.-Based Syst , vol.15 , Issue.8 , pp. 515-528
    • Zhou, Z.H.1    Chen, Z.Q.2
  • 6
    • 0034499376 scopus 로고    scopus 로고
    • A note on the utility of incremental learning
    • C. Giraud-Carrier, "A note on the utility of incremental learning," Artif. Intell. Commun., vol. 13, no. 4, pp. 215-223, 2000.
    • (2000) Artif. Intell. Commun , vol.13 , Issue.4 , pp. 215-223
    • Giraud-Carrier, C.1
  • 7
    • 0141480941 scopus 로고    scopus 로고
    • Formal models of incremental learning and their analysis
    • S. Lange and S. Zilles, "Formal models of incremental learning and their analysis," in Proc. Int. Joint Conf. Neural Netw., 2003, vol. 4, pp. 2691-2696.
    • (2003) Proc. Int. Joint Conf. Neural Netw , vol.4 , pp. 2691-2696
    • Lange, S.1    Zilles, S.2
  • 8
    • 0030286374 scopus 로고    scopus 로고
    • Incremental knowledge acquisition in supervised learning networks
    • Nov
    • L. M. Fu, "Incremental knowledge acquisition in supervised learning networks," IEEE Trans. Syst. Man Cybern. A, Syst. Humans, vol. 26, no. 6, pp. 801-809, Nov. 1996.
    • (1996) IEEE Trans. Syst. Man Cybern. A, Syst. Humans , vol.26 , Issue.6 , pp. 801-809
    • Fu, L.M.1
  • 9
    • 40649128119 scopus 로고
    • Nonlinear neural networks: Principles, mechanisms, and architectures
    • S. Grossberg, "Nonlinear neural networks: Principles, mechanisms, and architectures," Neural Netw., vol. 1, no. 1, pp. 17-61, 1988.
    • (1988) Neural Netw , vol.1 , Issue.1 , pp. 17-61
    • Grossberg, S.1
  • 10
    • 0035008798 scopus 로고    scopus 로고
    • Life-long learning cell structures - Continuously learning without catastrophic interference
    • May
    • F. H. Hamker, "Life-long learning cell structures - Continuously learning without catastrophic interference," Neural Netw., vol. 14, no. 4-5, pp. 551-573, May 2001.
    • (2001) Neural Netw , vol.14 , Issue.4-5 , pp. 551-573
    • Hamker, F.H.1
  • 11
    • 1242310003 scopus 로고    scopus 로고
    • Incremental learning with partial instance memory
    • Apr
    • M. A. Maloof and R. S. Michalski, "Incremental learning with partial instance memory," Artif. Intell., vol. 154, no. 1-2, pp. 95-126, Apr. 2004.
    • (2004) Artif. Intell , vol.154 , Issue.1-2 , pp. 95-126
    • Maloof, M.A.1    Michalski, R.S.2
  • 12
    • 33947209467 scopus 로고    scopus 로고
    • Online handwritten shape recognition using segmental hidden Markov models
    • Feb
    • T. Artieres, S. Marukatat, and P. Gallinari, "Online handwritten shape recognition using segmental hidden Markov models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 2, pp. 205-217, Feb. 2007.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell , vol.29 , Issue.2 , pp. 205-217
    • Artieres, T.1    Marukatat, S.2    Gallinari, P.3
  • 13
    • 4043139306 scopus 로고    scopus 로고
    • An incremental learning algorithm with confidence estimation for automated identification of NDE signals
    • Aug
    • R. Polikar, L. Udpa, S. Udpa, and V. Honavar, "An incremental learning algorithm with confidence estimation for automated identification of NDE signals," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 51, no. 8, pp. 990-1001, Aug. 2004.
    • (2004) IEEE Trans. Ultrason. Ferroelectr. Freq. Control , vol.51 , Issue.8 , pp. 990-1001
    • Polikar, R.1    Udpa, L.2    Udpa, S.3    Honavar, V.4
  • 14
    • 27544468298 scopus 로고    scopus 로고
    • Incremental learning of ensemble classifiers on ECG data
    • J. Macek, "Incremental learning of ensemble classifiers on ECG data," in Proc. IEEE Symp. Comput. Based Med. Syst., 2005, pp. 315-320.
    • (2005) Proc. IEEE Symp. Comput. Based Med. Syst , pp. 315-320
    • Macek, J.1
  • 15
    • 0035521110 scopus 로고    scopus 로고
    • Learn++: An incremental learning algorithm for supervised neural networks
    • Jul
    • R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, "Learn++: An incremental learning algorithm for supervised neural networks," IEEE Trans. Syst. Man Cybern. C, Appl. Rev., vol. 31, no. 4, pp. 497-508, Jul. 2001.
    • (2001) IEEE Trans. Syst. Man Cybern. C, Appl. Rev , vol.31 , Issue.4 , pp. 497-508
    • Polikar, R.1    Udpa, L.2    Udpa, S.S.3    Honavar, V.4
  • 16
    • 0000027741 scopus 로고
    • Learning structural descriptions from examples
    • P. Winston, Ed. New York: Mc Graw Hill
    • P. Winston, "Learning structural descriptions from examples," in The Psychology of Computer Vision, P. Winston, Ed. New York: Mc Graw Hill, 1975, pp. 157-209.
    • (1975) The Psychology of Computer Vision , pp. 157-209
    • Winston, P.1
  • 17
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • Apr
    • N. Littlestone, "Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm," Mach. Learn., vol. 2, no. 4, pp. 285-318, Apr. 1988.
    • (1988) Mach. Learn , vol.2 , Issue.4 , pp. 285-318
    • Littlestone, N.1
  • 18
    • 0036568031 scopus 로고    scopus 로고
    • PAC analogues of perceptron and Winnow via boosting the margin
    • May
    • R. Servedio, "PAC analogues of perceptron and Winnow via boosting the margin," Mach. Learn., vol. 47, no. 2-3, pp. 133-151, May 2002.
    • (2002) Mach. Learn , vol.47 , Issue.2-3 , pp. 133-151
    • Servedio, R.1
  • 19
    • 0036778936 scopus 로고    scopus 로고
    • An incremental learning algorithm for constructing Boolean functions from positive and negative examples
    • Oct
    • S. Nieto Sanchez, E. Triantaphyllou, J. Chen, and T. W. Liao, "An incremental learning algorithm for constructing Boolean functions from positive and negative examples," Comput. Operat. Res., vol. 29, no. 12, pp. 1677-1700, Oct. 2002.
    • (2002) Comput. Operat. Res , vol.29 , Issue.12 , pp. 1677-1700
    • Nieto Sanchez, S.1    Triantaphyllou, E.2    Chen, J.3    Liao, T.W.4
  • 20
    • 0037031030 scopus 로고    scopus 로고
    • Direct and indirect algorithms for online learning of disjunctions
    • M. K. Warmuth, D. P. Helmbold, and S. Panizza, "Direct and indirect algorithms for online learning of disjunctions," Theor. Comput. Sci. vol. 284, no. 1, pp. 109-142, 2002.
    • (2002) Theor. Comput. Sci , vol.284 , Issue.1 , pp. 109-142
    • Warmuth, M.K.1    Helmbold, D.P.2    Panizza, S.3
  • 21
    • 0034331286 scopus 로고    scopus 로고
    • Class separability estimation and incremental learning using boundary methods
    • Nov
    • J. L. Sancho, W. E. Pierson, B. Ulug, A. R. Figueiras-Vidal, and S. C. Ahalt, "Class separability estimation and incremental learning using boundary methods," Neurocomputing, vol. 35, no. 1-4, pp. 3-26, Nov. 2000.
    • (2000) Neurocomputing , vol.35 , Issue.1-4 , pp. 3-26
    • Sancho, J.L.1    Pierson, W.E.2    Ulug, B.3    Figueiras-Vidal, A.R.4    Ahalt, S.C.5
  • 22
    • 13844281522 scopus 로고    scopus 로고
    • Incremental training of support vector machines
    • Jan
    • A. Shilton, M. Palaniswami, D. Ralph, and C. T. Ah, "Incremental training of support vector machines," IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 114-131, Jan. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.1 , pp. 114-131
    • Shilton, A.1    Palaniswami, M.2    Ralph, D.3    Ah, C.T.4
  • 23
    • 49049090861 scopus 로고    scopus 로고
    • A constrained optimization approach to preserving prior knowledge during incremental training
    • Jun
    • S. Ferrari and M. Jensenius, "A constrained optimization approach to preserving prior knowledge during incremental training," IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 996-1009, Jun. 2008.
    • (2008) IEEE Trans. Neural Netw , vol.19 , Issue.6 , pp. 996-1009
    • Ferrari, S.1    Jensenius, M.2
  • 24
    • 49149087192 scopus 로고    scopus 로고
    • Incremental learning of chunk data for online pattern classification Systems
    • Jun
    • S. Ozawa, S. Pang, and N. Kasabov, "Incremental learning of chunk data for online pattern classification Systems," IEEE Trans. Neural Netw. vol. 19, no. 6, pp. 1061-1074, Jun. 2008.
    • (2008) IEEE Trans. Neural Netw , vol.19 , Issue.6 , pp. 1061-1074
    • Ozawa, S.1    Pang, S.2    Kasabov, N.3
  • 25
    • 0035659641 scopus 로고    scopus 로고
    • On-line learning, reasoning, rule extraction and aggregation in locally optimized evolving fuzzy neural networks
    • Oct
    • K. Kasabov, "On-line learning, reasoning, rule extraction and aggregation in locally optimized evolving fuzzy neural networks," Neurocomputing, vol. 41, no. 1-4, pp. 25-45, Oct. 2001.
    • (2001) Neurocomputing , vol.41 , Issue.1-4 , pp. 25-45
    • Kasabov, K.1
  • 26
    • 0005907167 scopus 로고    scopus 로고
    • Constructing a fuzzy rule-based systems using the ILFN network and genetic algorithm
    • G. G. Yen and P. Meesad, "Constructing a fuzzy rule-based systems using the ILFN network and genetic algorithm," Int. J. Neural Syst., vol. 11, no. 5, pp. 427-443, 2001.
    • (2001) Int. J. Neural Syst , vol.11 , Issue.5 , pp. 427-443
    • Yen, G.G.1    Meesad, P.2
  • 27
    • 0030141870 scopus 로고    scopus 로고
    • Incremental backpropagation learning networks
    • May
    • L. M. Fu, H. Hui-Huang, and J. C. Principe, "Incremental backpropagation learning networks," IEEE Trans. Neural Netw., vol. 7, no. 3, pp. 757-761, May 1996.
    • (1996) IEEE Trans. Neural Netw , vol.7 , Issue.3 , pp. 757-761
    • Fu, L.M.1    Hui-Huang, H.2    Principe, J.C.3
  • 28
    • 0033336432 scopus 로고    scopus 로고
    • Incremental learning methods with retrieving of interfered patterns
    • Nov
    • K. Yamauchi, N. Yamaguchi, and N. Ishii, "Incremental learning methods with retrieving of interfered patterns," IEEE Trans. Neural Netw. vol. 10, no. 6, pp. 1351-1365, Nov. 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , Issue.6 , pp. 1351-1365
    • Yamauchi, K.1    Yamaguchi, N.2    Ishii, N.3
  • 29
    • 0029777583 scopus 로고    scopus 로고
    • On-line training of recurrent neural networks with continuous topology adaptation
    • Jan
    • D. Obradovic, "On-line training of recurrent neural networks with continuous topology adaptation," IEEE Trans. Neural Netw., vol. 7, no. 1, pp. 222-228, Jan. 1996.
    • (1996) IEEE Trans. Neural Netw , vol.7 , Issue.1 , pp. 222-228
    • Obradovic, D.1
  • 30
    • 0037361265 scopus 로고    scopus 로고
    • On the capability of accommodating new classes within probabilistic neural networks
    • Mar
    • T. Hoya, "On the capability of accommodating new classes within probabilistic neural networks," IEEE Trans. Neural Netw., vol. 14, no. 2, pp. 450-453, Mar. 2003.
    • (2003) IEEE Trans. Neural Netw , vol.14 , Issue.2 , pp. 450-453
    • Hoya, T.1
  • 31
    • 0031246271 scopus 로고    scopus 로고
    • Decision tree induction based on efficient tree restructuring
    • P. Utgoff, N. C. Berkman, and J. A. Clause, "Decision tree induction based on efficient tree restructuring," Mach. Learn., vol. 29, no. 1, pp. 5-44, 1997.
    • (1997) Mach. Learn , vol.29 , Issue.1 , pp. 5-44
    • Utgoff, P.1    Berkman, N.C.2    Clause, J.A.3
  • 32
    • 0010012318 scopus 로고
    • Incremental learning from noisy data
    • Sep
    • J. C. Schlimmer and R. H. Granger, "Incremental learning from noisy data," Mach. Learn., vol. 1, no. 3, pp. 317-354, Sep. 1986.
    • (1986) Mach. Learn , vol.1 , Issue.3 , pp. 317-354
    • Schlimmer, J.C.1    Granger, R.H.2
  • 33
    • 0026923589 scopus 로고
    • Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps
    • Sep
    • G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B. Rosen, "Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps," IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 698-713, Sep. 1992.
    • (1992) IEEE Trans. Neural Netw , vol.3 , Issue.5 , pp. 698-713
    • Carpenter, G.A.1    Grossberg, S.2    Markuzon, N.3    Reynolds, J.H.4    Rosen, D.B.5
  • 34
    • 0030198885 scopus 로고    scopus 로고
    • Gaussian ARTMAP: A neural network for fast incremental learning of noisy multidimensional maps
    • Jul
    • J. R. Williamson, "Gaussian ARTMAP: A neural network for fast incremental learning of noisy multidimensional maps," Neural Netw. vol. 9, no. 5, pp. 881-897, Jul. 1996.
    • (1996) Neural Netw , vol.9 , Issue.5 , pp. 881-897
    • Williamson, J.R.1
  • 35
    • 0031194555 scopus 로고    scopus 로고
    • An incremental adaptive network for on-line supervised learning and probability estimation
    • Jul
    • C. P. Lim and R. F. Harrison, "An incremental adaptive network for on-line supervised learning and probability estimation," Neural Netw., vol. 10, no. 5, pp. 925-939, Jul. 1997.
    • (1997) Neural Netw , vol.10 , Issue.5 , pp. 925-939
    • Lim, C.P.1    Harrison, R.F.2
  • 36
    • 33748430945 scopus 로고    scopus 로고
    • A new ARTMAP-based neural network for incremental learning
    • M. C. Su, J. Lee, and K. L. Hsieh, "A new ARTMAP-based neural network for incremental learning," Neurocomputing, vol. 69, no. 16-18, pp. 2284-2300, 2006.
    • (2006) Neurocomputing , vol.69 , Issue.16-18 , pp. 2284-2300
    • Su, M.C.1    Lee, J.2    Hsieh, K.L.3
  • 37
    • 0032207166 scopus 로고    scopus 로고
    • Comparing neural networks: A benchmark on growing neural gas, growing cell structures, and fuzzy ARTMAP
    • Nov
    • D. Heinke and F. H. Hamker, "Comparing neural networks: A benchmark on growing neural gas, growing cell structures, and fuzzy ARTMAP," IEEE Trans. Neural Netw., vol. 9, no. 6, pp. 1279-1291, Nov. 1998.
    • (1998) IEEE Trans. Neural Netw , vol.9 , Issue.6 , pp. 1279-1291
    • Heinke, D.1    Hamker, F.H.2
  • 39
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Jun
    • R. E. Schapire, "The strength of weak learnability," Mach. Learn. vol. 5, no. 2, pp. 197-227, Jun. 1990.
    • (1990) Mach. Learn , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 41
    • 0026692226 scopus 로고
    • Stacked generalization
    • D. H. Wolpert, "Stacked generalization," Neural Netw., vol. 5, no. 2, pp. 241-259, 1992.
    • (1992) Neural Netw , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 42
    • 0028259890 scopus 로고
    • Decision combination in multiple classifier systems
    • Jan
    • T. K. Ho, J. J. Hull, and S. N. Srihari, "Decision combination in multiple classifier systems," IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 1, pp. 66-75, Jan. 1994.
    • (1994) IEEE Trans. Pattern Anal. Mach. Intell , vol.16 , Issue.1 , pp. 66-75
    • Ho, T.K.1    Hull, J.J.2    Srihari, S.N.3
  • 45
    • 0031121318 scopus 로고    scopus 로고
    • Combination of multiple classifiers using local accuracy estimates
    • Apr
    • K. Woods, W. P. J. Kegelmeyer, and K. Bowyer, "Combination of multiple classifiers using local accuracy estimates," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 4, pp. 405-410, Apr. 1997.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell , vol.19 , Issue.4 , pp. 405-410
    • Woods, K.1    Kegelmeyer, W.P.J.2    Bowyer, K.3
  • 46
    • 0030142134 scopus 로고    scopus 로고
    • Local linear perceptrons for classification
    • May
    • E. Alpaydin and M. I. Jordan, "Local linear perceptrons for classification," IEEE Trans. Neural Netw., vol. 7, no. 3, pp. 788-792, May 1996.
    • (1996) IEEE Trans. Neural Netw , vol.7 , Issue.3 , pp. 788-792
    • Alpaydin, E.1    Jordan, M.I.2
  • 47
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • May
    • Z. H. Zhou, J. Wu, and W. Tang, "Ensembling neural networks: Many could be better than all," Artif. Intell., vol. 137, no. 1-2, pp. 239-263, May 2002.
    • (2002) Artif. Intell , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.2    Tang, W.3
  • 48
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Mach. Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 49
    • 0031211090 scopus 로고    scopus 로고
    • Decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. E. Schapire, "Decision-theoretic generalization of on-line learning and an application to boosting," J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119-139, 1997.
    • (1997) J. Comput. Syst. Sci , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 50
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman, "Arcing classifiers," Ann. Statist., vol. 26, no. 3, pp. 801-849, 1998.
    • (1998) Ann. Statist , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 51
    • 21244501361 scopus 로고    scopus 로고
    • A theoretical and experimental analysis of linear combiners for multiple classifier systems
    • Jun
    • G. Fumera and F. Roli, "A theoretical and experimental analysis of linear combiners for multiple classifier systems," IEEE Tran. Pattern Anal. Mach. Intell., vol. 27, no. 6, pp. 942-956, Jun. 2005.
    • (2005) IEEE Tran. Pattern Anal. Mach. Intell , vol.27 , Issue.6 , pp. 942-956
    • Fumera, G.1    Roli, F.2
  • 52
    • 0027961797 scopus 로고
    • Combining the results of several neural network classifiers
    • G. Rogova, "Combining the results of several neural network classifiers," Neural Netw., vol. 7, no. 5, pp. 777-781, 1994.
    • (1994) Neural Netw , vol.7 , Issue.5 , pp. 777-781
    • Rogova, G.1
  • 53
    • 0034830461 scopus 로고    scopus 로고
    • Decision templates for multiple classifier fusion: An experimental comparison
    • Feb
    • L. I. Kuncheva, J. C. Bezdek, and R. P. W. Duin, "Decision templates for multiple classifier fusion: An experimental comparison," Pattern Recognit., vol. 34, no. 2, pp. 299-314, Feb. 2001.
    • (2001) Pattern Recognit , vol.34 , Issue.2 , pp. 299-314
    • Kuncheva, L.I.1    Bezdek, J.C.2    Duin, R.P.W.3
  • 54
    • 0037365188 scopus 로고    scopus 로고
    • Combining classifiers with meta decision trees
    • L. Todorovski and L. Dzeroski, "Combining classifiers with meta decision trees," Mach. Learn., vol. 50, no. 223, p. 249, 2003.
    • (2003) Mach. Learn , vol.50 , Issue.223 , pp. 249
    • Todorovski, L.1    Dzeroski, L.2
  • 55
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • R. Polikar, "Ensemble based systems in decision making," IEEE Circuits Syst. Mag., vol. 6, no. 3, pp. 21-45, 2006.
    • (2006) IEEE Circuits Syst. Mag , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 56
    • 85032751446 scopus 로고    scopus 로고
    • Bootstrap - Inspired techniques in computation intelligence
    • Jul
    • R. Polikar, "Bootstrap - Inspired techniques in computation intelligence," IEEE Signal Process. Mag., vol. 24, no. 4, pp. 59-72, Jul. 2007.
    • (2007) IEEE Signal Process. Mag , vol.24 , Issue.4 , pp. 59-72
    • Polikar, R.1
  • 57
    • 0141921552 scopus 로고    scopus 로고
    • Online ensemble learning: An empirical study
    • A. Fern and R. Givan, "Online ensemble learning: An empirical study," Mach. Learn., vol. 53, no. 1-2, pp. 71-109, 2003.
    • (2003) Mach. Learn , vol.53 , Issue.1-2 , pp. 71-109
    • Fern, A.1    Givan, R.2
  • 58
    • 27944478140 scopus 로고    scopus 로고
    • Online bagging and boosting
    • Waikoloa, HI
    • N. C. Oza, "Online bagging and boosting," in Proc. IEEE Int. Conf. Syst. Man Cybern., Waikoloa, HI, 2005, vol. 3, pp. 2340-2345.
    • (2005) Proc. IEEE Int. Conf. Syst. Man Cybern , vol.3 , pp. 2340-2345
    • Oza, N.C.1
  • 59
    • 0037279487 scopus 로고    scopus 로고
    • A novel training scheme for multi-layered perceptrons to realize proper generalization and incremental learning
    • Jan
    • D. Chakraborty and N. R. Pal, "A novel training scheme for multi-layered perceptrons to realize proper generalization and incremental learning," IEEE Trans. Neural Netw., vol. 14, no. 1, pp. 1-14, Jan. 2003.
    • (2003) IEEE Trans. Neural Netw , vol.14 , Issue.1 , pp. 1-14
    • Chakraborty, D.1    Pal, N.R.2
  • 61
    • 37749050180 scopus 로고    scopus 로고
    • Dynamic weighted majority: An ensemble method for drifting concepts
    • J. Z. Kolter and M. A. Maloof, "Dynamic weighted majority: An ensemble method for drifting concepts," J. Mach. Learn. Res., vol. 8, pp. 2755-2790, 2007.
    • (2007) J. Mach. Learn. Res , vol.8 , pp. 2755-2790
    • Kolter, J.Z.1    Maloof, M.A.2
  • 62
    • 0036086746 scopus 로고    scopus 로고
    • Learn++: A classifier independent incremental learning algorithm for supervised neural networks
    • R. Polikar, J. Byorick, S. Krause, A. Marino, and M. Moreton, "Learn++: A classifier independent incremental learning algorithm for supervised neural networks," in Proc. IEEE Int. Joint Conf. Neural Netw., 2002, vol. 2, pp. 1742-1747.
    • (2002) Proc. IEEE Int. Joint Conf. Neural Netw , vol.2 , pp. 1742-1747
    • Polikar, R.1    Byorick, J.2    Krause, S.3    Marino, A.4    Moreton, M.5
  • 63
    • 26444558082 scopus 로고    scopus 로고
    • Ensemble confidence estimates posterior probability
    • N. C. Oza, R. Polikar, J. Kittler, and F. Roli, Eds
    • M. Muhlbaier, A. Topalis, and R. Polikar, "Ensemble confidence estimates posterior probability," in Proc. 6th Int. Workshop Multiple Classifier Syst., N. C. Oza, R. Polikar, J. Kittler, and F. Roli, Eds., 2005, vol. 3541, pp. 326-335.
    • (2005) Proc. 6th Int. Workshop Multiple Classifier Syst , vol.3541 , pp. 326-335
    • Muhlbaier, M.1    Topalis, A.2    Polikar, R.3
  • 65
    • 35048904511 scopus 로고    scopus 로고
    • M. Muhlbaier, A. Topalis, and R. Polikar, Learn++.MT: A new approach to incremental learning, in Lecture Notes in Computer Science, F. Roli, J. Kittler, and T. Windeatt, Eds. Berlin, Germany: Springer-Verlag, 2004, 3077, pp. 52-61.
    • M. Muhlbaier, A. Topalis, and R. Polikar, "Learn++.MT: A new approach to incremental learning," in Lecture Notes in Computer Science, F. Roli, J. Kittler, and T. Windeatt, Eds. Berlin, Germany: Springer-Verlag, 2004, vol. 3077, pp. 52-61.
  • 66
    • 0000391037 scopus 로고
    • Majority system and the condorcet jury theorem
    • P. J. Boland, "Majority system and the condorcet jury theorem," Statistician, vol. 38, no. 3, pp. 181-189, 1989.
    • (1989) Statistician , vol.38 , Issue.3 , pp. 181-189
    • Boland, P.J.1
  • 67
    • 33745950074 scopus 로고    scopus 로고
    • Dynamically weighted majority voting for incremental learning and comparison of three boosting based approaches
    • A. Gangardiwala and R. Polikar, "Dynamically weighted majority voting for incremental learning and comparison of three boosting based approaches," in Proc. IEEE Int. Joint Conf. Neural Netw., 2005, vol. 2, pp. 1131-1136.
    • (2005) Proc. IEEE Int. Joint Conf. Neural Netw , vol.2 , pp. 1131-1136
    • Gangardiwala, A.1    Polikar, R.2
  • 68
    • 58649097789 scopus 로고    scopus 로고
    • ++NC, Jul. 18, 2008 [Online]. Available: http:// www.engineering.rowan.edu/~polikar/Learn++
    • ++NC," Jul. 18, 2008 [Online]. Available: http:// www.engineering.rowan.edu/~polikar/Learn++
  • 69
    • 0035545613 scopus 로고    scopus 로고
    • Artificial intelligence methods for selection of an optimized sensor array for identification of volatile organic compounds
    • R. Polikar, R. Shinar, L. Udpa, and M. D. Porter, "Artificial intelligence methods for selection of an optimized sensor array for identification of volatile organic compounds," Sens. Actuators B, Chem., vol. 80, no. 3, pp. 243-254, 2001.
    • (2001) Sens. Actuators B, Chem , vol.80 , Issue.3 , pp. 243-254
    • Polikar, R.1    Shinar, R.2    Udpa, L.3    Porter, M.D.4
  • 71
    • 34548217482 scopus 로고    scopus 로고
    • An ensemble approach for incremental learning in nonstationery environments
    • Berlin, Germany: Springer-Verlag
    • M. Muldbaier and R. Polikar, "An ensemble approach for incremental learning in nonstationery environments," in Lecture Notes in Computer Science. Berlin, Germany: Springer-Verlag, 2007, vol. 4472, pp. 490-500.
    • (2007) Lecture Notes in Computer Science , vol.4472 , pp. 490-500
    • Muldbaier, M.1    Polikar, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.