메뉴 건너뛰기




Volumn 5863 LNCS, Issue PART 1, 2009, Pages 512-519

Ensembling heterogeneous learning models with boosting

Author keywords

Boosting; Genetic algorithms; Heterogeneous models

Indexed keywords

ADABOOST; AUTOMATIC DESIGN; BOOSTING ALGORITHM; CLASSIFICATION DATASETS; CLASSIFIER ENSEMBLES; DIVERSITY LEVEL; HETEROGENEOUS MODELS; LEARNING MODELS; RBF NEURAL NETWORK; UCI REPOSITORY;

EID: 76649135491     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-10677-4_58     Document Type: Conference Paper
Times cited : (11)

References (15)
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123-140 (1996)
    • (1996) Mach. Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 3
    • 33845506212 scopus 로고    scopus 로고
    • Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles
    • Canuto, A., Abreu, M., Oliveira, L., Xavier Jr., J., Santos, A.: Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles. Pattern Recognit. Lett. 28(4), 472-486 (2007)
    • (2007) Pattern Recognit. Lett , vol.28 , Issue.4 , pp. 472-486
    • Canuto, A.1    Abreu, M.2    Oliveira, L.3    Xavier Jr., J.4    Santos, A.5
  • 5
    • 80053403826 scopus 로고    scopus 로고
    • Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, 1857, pp. 1-15. Springer, Heidelberg (2000)
    • Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1-15. Springer, Heidelberg (2000)
  • 7
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • Freund, Y., Schapire, R.: A decision-theoretic generalization of online learning and an application to boosting. J. Comput. Syst. Sci 55, 119-139 (1997)
    • (1997) J. Comput. Syst. Sci , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 10
    • 58549090885 scopus 로고    scopus 로고
    • Improving malware detection by applying multi-inducer ensemble
    • Menahem, E., Shabtai, A., Rokach, L., Elovici, Y.: Improving malware detection by applying multi-inducer ensemble. Comput. Stat. Data Anal. 53, 1483-1494 (2009)
    • (2009) Comput. Stat. Data Anal , vol.53 , pp. 1483-1494
    • Menahem, E.1    Shabtai, A.2    Rokach, L.3    Elovici, Y.4
  • 11
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 11, 169-198 (1999)
    • (1999) J. Artif. Intell. Res , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 12
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21-45 (2006)
    • (2006) IEEE Circuits Syst. Mag , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 13
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique combining boosting and wagging
    • Webb, G.I.: Multiboosting: A technique combining boosting and wagging. Mach. Learn. 40, 159-196 (2000)
    • (2000) Mach. Learn , vol.40 , pp. 159-196
    • Webb, G.I.1
  • 15
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhou, Z.-H., Wu, J., Tang, W.: Ensembling neural networks: Many could be better than all. Artif. Intell. 137(1-2), 239-263 (2002)
    • (2002) Artif. Intell , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.