메뉴 건너뛰기




Volumn 26, Issue 9, 2013, Pages 2194-2205

Robust predictive model for evaluating breast cancer survivability

Author keywords

Breast cancer survivability; Machine learning; Semi supervised learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; DEEP NEURAL NETWORKS; DIAGNOSIS; DISEASES; LEARNING ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS; NOISE ABATEMENT; STABILITY;

EID: 84888389162     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2013.06.013     Document Type: Article
Times cited : (122)

References (55)
  • 1
    • 33646417252 scopus 로고    scopus 로고
    • Artificial neural networks
    • Sydenham, P., Thorn, R. Eds., London
    • Abraham A., 2005. Artificial neural networks. In: Sydenham, P., Thorn, R. (Eds.), Handbook for Measurement Systems Design, London.
    • (2005) Handbook for Measurement Systems Design
    • Abraham, A.1
  • 2
    • 33750525529 scopus 로고    scopus 로고
    • Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS)
    • Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43, 1223-1232.
    • (2006) Journal of Applied Ecology , vol.43 , pp. 1223-1232
    • Allouche, O.1    Tsoar, A.2    Kadmon, R.3
  • 3
    • 84970866422 scopus 로고
    • Diagnostic tests; 1: Sensitivity and specificity
    • Altman, D., Bland, M., 1994. Diagnostic tests; 1: sensitivity and specificity. Br. Med. J. 308, 1552. (1552).
    • (1994) Br. Med. J. , vol.308 , Issue.1552 , pp. 1552
    • Altman, D.1    Bland, M.2
  • 4
    • 0344442208 scopus 로고    scopus 로고
    • Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme
    • Amir, E., Evans, D. G. R., Shenton, A, Lalloo, F, Moran, A, Boggis, C, et al., 2003. Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme. J. Med. Genetics 40, 807-814.
    • (2003) J. Med. Genetics , vol.40 , pp. 807-814
    • Amir, E.1    Evans, D.G.R.2    Shenton, A.3    Lalloo, F.4    Moran, A.5    Boggis, C.6
  • 6
    • 84876840619 scopus 로고    scopus 로고
    • American Association for Artificial Inteligence
    • Bagnell, J. A., 2005. Robust Supervised Learning. American Association for Artificial Inteligence.
    • (2005) Robust Supervised Learning
    • Bagnell, J.A.1
  • 7
    • 19344375744 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • Bair, E., Tibshirani, R., 2004. Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol. 2, 0511-0522.
    • (2004) PLoS Biol. , vol.2 , pp. 0511-0522
    • Bair, E.1    Tibshirani, R.2
  • 8
    • 9444289383 scopus 로고    scopus 로고
    • Regularization and semi-supervised learning on large graphs
    • Springer
    • Belkin M., Matveeva I., Niyogi P., 2004. Regularization and Semi-supervised Learning on Large Graphs. In: Lecture Notes in Computer Science, vol. 3120, Springer, pp. 624-638.
    • (2004) Lecture Notes in Computer Science , vol.3120 , pp. 624-638
    • Belkin, M.1    Matveeva, I.2    Niyogi, P.3
  • 9
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • Breiman, L., 1996. Stacked regressions. Machine Learning 24(1), 49-64.
    • (1996) Machine Learning , vol.24 , Issue.1 , pp. 49-64
    • Breiman, L.1
  • 10
    • 0036202506 scopus 로고    scopus 로고
    • A computer program for period analysis of cancer patient survival
    • Brenner, H., Gefeller, O., Hakulinen, T., 2002. A computer program for period analysis of cancer patient survival. Eur. J. Cancer 38, 690-695.
    • (2002) Eur. J. Cancer , vol.38 , pp. 690-695
    • Brenner, H.1    Gefeller, O.2    Hakulinen, T.3
  • 11
    • 0003432464 scopus 로고    scopus 로고
    • Cancer Facts & Figures, Atlanta, 2010
    • Cancer Facts & Figures, 2010. American Cancer Society. Atlanta, 2010.
    • (2010) American Cancer Society
  • 12
    • 34249299788 scopus 로고    scopus 로고
    • Towards an intelligent medical system for the aesthetic evaluation of breast cancer conservative treatment
    • Cardoso, J. S., Cardoso, M. J., 2007. Towards an intelligent medical system for the aesthetic evaluation of breast cancer conservative treatment. Artif. Intell. Med. 40, 115-126.
    • (2007) Artif. Intell. Med. , vol.40 , pp. 115-126
    • Cardoso, J.S.1    Cardoso, M.J.2
  • 16
    • 84878897014 scopus 로고    scopus 로고
    • Sharpened graph ensemble for semi-supervised learning
    • Choi, I., Park, K., Shin, H., 2008. Sharpened graph ensemble for semi-supervised learning. Intell. Data Anal. 17, 387-398.
    • (2008) Intell. Data Anal. , vol.17 , pp. 387-398
    • Choi, I.1    Park, K.2    Shin, H.3
  • 17
    • 33744961676 scopus 로고    scopus 로고
    • Applications of machine learning in cancer prediction and prognosis
    • Cruz, J. A., Wishart, D. S., 2006. Applications of machine learning in cancer prediction and prognosis. Cancer Inf. 2, 59-78.
    • (2006) Cancer Inf. , vol.2 , pp. 59-78
    • Cruz, J.A.1    Wishart, D.S.2
  • 18
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: A comparison of three data mining methods
    • Delen, D., Walker, G., Kadam, A., 2005. Predicting breast cancer survivability: a comparison of three data mining methods. Artif. Intell. Med. 34, 113-127.
    • (2005) Artif. Intell. Med. , vol.34 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 19
    • 0031361611 scopus 로고    scopus 로고
    • Machine-learning research
    • Dietterich, Thomas G., 1997. Machine-learning research. AI Magazine 18(4), 97-136.
    • (1997) AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1
  • 24
    • 85161971986 scopus 로고    scopus 로고
    • Regulator discovery from gene expression time series of malaria parasites: A hierachical approach
    • Hernandez-Lobato, J. M., Dijkstra, T., Heskes, T, 2008. Regulator discovery from gene expression time series of malaria parasites: a hierachical approach. Adv. Inf. Process. Syst. 20, 649-656.
    • (2008) Adv. Inf. Process. Syst. , vol.20 , pp. 649-656
    • Hernandez-Lobato, J.M.1    Dijkstra, T.2    Heskes, T.3
  • 25
    • 84870547848 scopus 로고    scopus 로고
    • FDT - Weighted fuzzy decision trees for prognosis of breast cancer survivability
    • Roddick, J. F., Li, J., Christen, P., Kennedy, P. J. Eds., South Australia
    • Khan U., Shin H., Choi J. P., Kim M., 2008. FDT - weighted fuzzy decision trees for prognosis of breast cancer survivability. In: Roddick, J. F., Li, J., Christen, P., Kennedy, P. J. (Eds.), The Proceedings of the Seventh Australasian Data Mining Conference Glenelg, South Australia, pp. 141-152.
    • (2008) The Proceedings of the Seventh Australasian Data Mining Conference Glenelg , pp. 141-152
    • Khan, U.1    Shin, H.2    Choi, J.P.3    Kim, M.4
  • 26
    • 84882786709 scopus 로고    scopus 로고
    • Breast cancer survivability prediction using labeled, unlabeled, and pseudo-labeled patient data
    • Kim, J., Shin, H., 2013. Breast cancer survivability prediction using labeled, unlabeled, and pseudo-labeled patient data. J. Am. Med. Inf. Assoc. 20(4), 613-618.
    • (2013) J. Am. Med. Inf. Assoc. , vol.20 , Issue.4 , pp. 613-618
    • Kim, J.1    Shin, H.2
  • 27
    • 38349031393 scopus 로고    scopus 로고
    • Machine learning: A review of classification and combining techniques
    • Kotsiantis, S. B., Zaharakis, I. D., Pintelas, P. E., 2006. Machine learning: a review of classification and combining techniques. Artif. Intell. Rev. 26, 159-190.
    • (2006) Artif. Intell. Rev. , vol.26 , pp. 159-190
    • Kotsiantis, S.B.1    Zaharakis, I.D.2    Pintelas, P.E.3
  • 29
  • 31
    • 42649123535 scopus 로고    scopus 로고
    • Accessed: 11 July 2011
    • NC Institute. Breast Cancer Statistics, USA, 2010. National Cancer Institute, 2010, 〈http://www.cancer.gov/cancertopics/types/breast〉 (Accessed: 11 July 2011).
    • (2010) National Cancer Institute, 2010
  • 32
    • 0003318017 scopus 로고
    • Modern heuristic techniques for combinatorial problems
    • Sons, J. W. Ed., USA
    • Peterson C., Söderberg B., 1993. Modern heuristic techniques for combinatorial problems. In: Sons, J. W. (Ed.), Artificial Neural Networks New York, USA, pp. 197-242.
    • (1993) Artificial Neural Networks New York , pp. 197-242
    • Peterson, C.1    Söderberg, B.2
  • 33
    • 0017873866 scopus 로고
    • Regression analysis of grouped survival data with application to breast cancer data
    • Prentice, R. L., Gloeckler, L. A., 1978. Regression analysis of grouped survival data with application to breast cancer data. Biometrics 34, 57-67.
    • (1978) Biometrics , vol.34 , pp. 57-67
    • Prentice, R.L.1    Gloeckler, L.A.2
  • 34
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost, F., Fawcett, T, 2001. Robust classification for imprecise environments. Mach. Learn. 42(3), 203-231.
    • (2001) Mach. Learn. , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 35
    • 0043198674 scopus 로고    scopus 로고
    • Robust learning with missing data
    • Ramoni, M., Sebastiani, P., 2001. Robust learning with missing data. Mach. Learn. 42(2), 147-170.
    • (2001) Mach. Learn. , vol.42 , Issue.2 , pp. 147-170
    • Ramoni, M.1    Sebastiani, P.2
  • 39
    • 0030325319 scopus 로고    scopus 로고
    • The use and interpretation of the Friedman test in the analysis of ordinal-scale data in repeated measures designs
    • Sheldon, M. R., Fillyaw, M. J., Thompson, W. D., 1996. The use and interpretation of the Friedman test in the analysis of ordinal-scale data in repeated measures designs. Physiother. Res. Int. 1(4), 221-228.
    • (1996) Physiother. Res. Int. , vol.1 , Issue.4 , pp. 221-228
    • Sheldon, M.R.1    Fillyaw, M.J.2    Thompson, W.D.3
  • 40
    • 33847676236 scopus 로고    scopus 로고
    • Neighborhood property-based pattern selection for support vector machines
    • Shin, H., Cho, S., 2007. Neighborhood property-based pattern selection for support vector machines. Neural Comput. 19, 816-855.
    • (2007) Neural Comput. , vol.19 , pp. 816-855
    • Shin, H.1    Cho, S.2
  • 41
    • 36549013593 scopus 로고    scopus 로고
    • Graph sharpening plus graph integration: A synergy that improves protein functional classification
    • Shin, H., Lisewski, A. M., Lichtarge, O., 2007. Graph sharpening plus graph integration: a synergy that improves protein functional classification. Bioinformatics 23, 3217-3224.
    • (2007) Bioinformatics , vol.23 , pp. 3217-3224
    • Shin, H.1    Lisewski, A.M.2    Lichtarge, O.3
  • 45
    • 33845881963 scopus 로고    scopus 로고
    • Improved breast cancer prognosis through the combination of clinical and genetic markers
    • Sun, Y., Goodison, S., Li, J., Liu, L., Farmerie, W., 2007. Improved breast cancer prognosis through the combination of clinical and genetic markers. Bioinformatics 23, 30-37.
    • (2007) Bioinformatics , vol.23 , pp. 30-37
    • Sun, Y.1    Goodison, S.2    Li, J.3    Liu, L.4    Farmerie, W.5
  • 47
    • 69249220244 scopus 로고    scopus 로고
    • Towards breast cancer survivability prediction models through improving training space
    • Thongkam, J., Xu, G., Zhang, Y., Huang, F., 2009. Towards breast cancer survivability prediction models through improving training space. Expert Syst. Appl. 36, 12200-12209.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 12200-12209
    • Thongkam, J.1    Xu, G.2    Zhang, Y.3    Huang, F.4
  • 48
    • 85031073837 scopus 로고    scopus 로고
    • 〈http://cogsys.imm.dtu.dk/toolbox/ann/index.html〉.
  • 49
    • 85031084870 scopus 로고    scopus 로고
    • 〈http://sourceforge.net/projects/svm/〉.
  • 50
    • 84888322932 scopus 로고    scopus 로고
    • SSL Matlab codes will be available
    • 〈http://www.alphaminers.net〉 (SSL Matlab codes will be available).
  • 51
    • 64149104410 scopus 로고    scopus 로고
    • Efficient large margin semi-supervised learning
    • Wang, J., 2007. Efficient large margin semi-supervised learning. J. Mach. Learn. Res. 10, 719-742.
    • (2007) J. Mach. Learn. Res. , vol.10 , pp. 719-742
    • Wang, J.1
  • 53
    • 33749013037 scopus 로고    scopus 로고
    • Semi-supervised model-based document clustering: A comparative study
    • Zhong, S., 2006. Semi-supervised model-based document clustering: a comparative study. Mach. Learn. 65, 3-29.
    • (2006) Mach. Learn. , vol.65 , pp. 3-29
    • Zhong, S.1
  • 54
    • 33744955193 scopus 로고    scopus 로고
    • Ph. D. Thesis, School of Computer Science, Carnegie Mellon University, May
    • Zhu X., 2005. Semi-Supervised Learning with Graphs, Ph. D. Thesis, School of Computer Science, Carnegie Mellon University, May.
    • (2005) Semi-supervised Learning with Graphs
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.