-
1
-
-
33646417252
-
Artificial neural networks
-
Sydenham, P., Thorn, R. Eds., London
-
Abraham A., 2005. Artificial neural networks. In: Sydenham, P., Thorn, R. (Eds.), Handbook for Measurement Systems Design, London.
-
(2005)
Handbook for Measurement Systems Design
-
-
Abraham, A.1
-
2
-
-
33750525529
-
Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS)
-
Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43, 1223-1232.
-
(2006)
Journal of Applied Ecology
, vol.43
, pp. 1223-1232
-
-
Allouche, O.1
Tsoar, A.2
Kadmon, R.3
-
3
-
-
84970866422
-
Diagnostic tests; 1: Sensitivity and specificity
-
Altman, D., Bland, M., 1994. Diagnostic tests; 1: sensitivity and specificity. Br. Med. J. 308, 1552. (1552).
-
(1994)
Br. Med. J.
, vol.308
, Issue.1552
, pp. 1552
-
-
Altman, D.1
Bland, M.2
-
4
-
-
0344442208
-
Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme
-
Amir, E., Evans, D. G. R., Shenton, A, Lalloo, F, Moran, A, Boggis, C, et al., 2003. Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme. J. Med. Genetics 40, 807-814.
-
(2003)
J. Med. Genetics
, vol.40
, pp. 807-814
-
-
Amir, E.1
Evans, D.G.R.2
Shenton, A.3
Lalloo, F.4
Moran, A.5
Boggis, C.6
-
5
-
-
84859921107
-
A high-performance semi-supervised learning method for text chunking
-
Knight, K., Ng, H. T., Oflazer, K., Eds., Michigan
-
Andoy R. K., Zhangz T., 2005. A high-performance semi-supervised learning method for text chunking. In: Knight, K., Ng, H. T., Oflazer, K., (Eds.), The Proceedings of the Forty-Third Annual Meeting on Association for Computational Linguistics Ann Arbor, Michigan, pp. 1-9.
-
(2005)
The Proceedings of the Forty-third Annual Meeting on Association for Computational Linguistics Ann Arbor
, pp. 1-9
-
-
Andoy, R.K.1
Zhangz, T.2
-
6
-
-
84876840619
-
-
American Association for Artificial Inteligence
-
Bagnell, J. A., 2005. Robust Supervised Learning. American Association for Artificial Inteligence.
-
(2005)
Robust Supervised Learning
-
-
Bagnell, J.A.1
-
7
-
-
19344375744
-
Semi-supervised methods to predict patient survival from gene expression data
-
Bair, E., Tibshirani, R., 2004. Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol. 2, 0511-0522.
-
(2004)
PLoS Biol.
, vol.2
, pp. 0511-0522
-
-
Bair, E.1
Tibshirani, R.2
-
8
-
-
9444289383
-
Regularization and semi-supervised learning on large graphs
-
Springer
-
Belkin M., Matveeva I., Niyogi P., 2004. Regularization and Semi-supervised Learning on Large Graphs. In: Lecture Notes in Computer Science, vol. 3120, Springer, pp. 624-638.
-
(2004)
Lecture Notes in Computer Science
, vol.3120
, pp. 624-638
-
-
Belkin, M.1
Matveeva, I.2
Niyogi, P.3
-
9
-
-
0030196364
-
Stacked regressions
-
Breiman, L., 1996. Stacked regressions. Machine Learning 24(1), 49-64.
-
(1996)
Machine Learning
, vol.24
, Issue.1
, pp. 49-64
-
-
Breiman, L.1
-
10
-
-
0036202506
-
A computer program for period analysis of cancer patient survival
-
Brenner, H., Gefeller, O., Hakulinen, T., 2002. A computer program for period analysis of cancer patient survival. Eur. J. Cancer 38, 690-695.
-
(2002)
Eur. J. Cancer
, vol.38
, pp. 690-695
-
-
Brenner, H.1
Gefeller, O.2
Hakulinen, T.3
-
11
-
-
0003432464
-
-
Cancer Facts & Figures, Atlanta, 2010
-
Cancer Facts & Figures, 2010. American Cancer Society. Atlanta, 2010.
-
(2010)
American Cancer Society
-
-
-
12
-
-
34249299788
-
Towards an intelligent medical system for the aesthetic evaluation of breast cancer conservative treatment
-
Cardoso, J. S., Cardoso, M. J., 2007. Towards an intelligent medical system for the aesthetic evaluation of breast cancer conservative treatment. Artif. Intell. Med. 40, 115-126.
-
(2007)
Artif. Intell. Med.
, vol.40
, pp. 115-126
-
-
Cardoso, J.S.1
Cardoso, M.J.2
-
14
-
-
50649084677
-
Cluster kernels for semi-supervised learning
-
The MIT Press, Cambridge, England
-
Chapelle O., Weston J., Schölkopf B., 2003. Cluster kernels for semi-supervised learning. In: Advances in Neural Information Processing Systems, The MIT Press, Cambridge, England, pp. 585-592.
-
(2003)
Advances in Neural Information Processing Systems
, pp. 585-592
-
-
Chapelle, O.1
Weston, J.2
Schölkopf, B.3
-
15
-
-
33749252873
-
-
MIT Press, Cambridge, England
-
Chapelle, O., Schölkopf, B., Zien, A., 2006. Semi-supervised learning. The MIT Press, Cambridge, England, pp. 3-14.
-
(2006)
Semi-supervised Learning
, pp. 3-14
-
-
Chapelle, O.1
Schölkopf, B.2
Zien, A.3
-
16
-
-
84878897014
-
Sharpened graph ensemble for semi-supervised learning
-
Choi, I., Park, K., Shin, H., 2008. Sharpened graph ensemble for semi-supervised learning. Intell. Data Anal. 17, 387-398.
-
(2008)
Intell. Data Anal.
, vol.17
, pp. 387-398
-
-
Choi, I.1
Park, K.2
Shin, H.3
-
17
-
-
33744961676
-
Applications of machine learning in cancer prediction and prognosis
-
Cruz, J. A., Wishart, D. S., 2006. Applications of machine learning in cancer prediction and prognosis. Cancer Inf. 2, 59-78.
-
(2006)
Cancer Inf.
, vol.2
, pp. 59-78
-
-
Cruz, J.A.1
Wishart, D.S.2
-
18
-
-
19344364327
-
Predicting breast cancer survivability: A comparison of three data mining methods
-
Delen, D., Walker, G., Kadam, A., 2005. Predicting breast cancer survivability: a comparison of three data mining methods. Artif. Intell. Med. 34, 113-127.
-
(2005)
Artif. Intell. Med.
, vol.34
, pp. 113-127
-
-
Delen, D.1
Walker, G.2
Kadam, A.3
-
19
-
-
0031361611
-
Machine-learning research
-
Dietterich, Thomas G., 1997. Machine-learning research. AI Magazine 18(4), 97-136.
-
(1997)
AI Magazine
, vol.18
, Issue.4
, pp. 97-136
-
-
Dietterich, T.G.1
-
22
-
-
0031047117
-
Artificial neural networks improve the accuracy of cancer survival prediction
-
Harry, B., Phillip, H., David, B., Donald, E., John, N., Frank, E., Jeffery, R., David, P., David, G., 1997. Artificial neural networks improve the accuracy of cancer survival prediction. Am. Cancer Soc. 79(4), 857-862.
-
(1997)
Am. Cancer Soc.
, vol.79
, Issue.4
, pp. 857-862
-
-
Harry, B.1
Phillip, H.2
David, B.3
Donald, E.4
John, N.5
Frank, E.6
Jeffery, R.7
David, P.8
David, G.9
-
23
-
-
84880903985
-
Graph-based semi-supervised learning as a generative model
-
Veloso, M. M. Ed., Hyderabad, India
-
He J., Carbonell J., Liu Y., 2007. Graph-based semi-supervised learning as a generative model. In: Veloso, M. M. (Ed.), tThe Proceedings of the Twentieth International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 2492-2497.
-
(2007)
TThe Proceedings of the Twentieth International Joint Conference on Artificial Intelligence
, pp. 2492-2497
-
-
He, J.1
Carbonell, J.2
Liu, Y.3
-
24
-
-
85161971986
-
Regulator discovery from gene expression time series of malaria parasites: A hierachical approach
-
Hernandez-Lobato, J. M., Dijkstra, T., Heskes, T, 2008. Regulator discovery from gene expression time series of malaria parasites: a hierachical approach. Adv. Inf. Process. Syst. 20, 649-656.
-
(2008)
Adv. Inf. Process. Syst.
, vol.20
, pp. 649-656
-
-
Hernandez-Lobato, J.M.1
Dijkstra, T.2
Heskes, T.3
-
25
-
-
84870547848
-
FDT - Weighted fuzzy decision trees for prognosis of breast cancer survivability
-
Roddick, J. F., Li, J., Christen, P., Kennedy, P. J. Eds., South Australia
-
Khan U., Shin H., Choi J. P., Kim M., 2008. FDT - weighted fuzzy decision trees for prognosis of breast cancer survivability. In: Roddick, J. F., Li, J., Christen, P., Kennedy, P. J. (Eds.), The Proceedings of the Seventh Australasian Data Mining Conference Glenelg, South Australia, pp. 141-152.
-
(2008)
The Proceedings of the Seventh Australasian Data Mining Conference Glenelg
, pp. 141-152
-
-
Khan, U.1
Shin, H.2
Choi, J.P.3
Kim, M.4
-
26
-
-
84882786709
-
Breast cancer survivability prediction using labeled, unlabeled, and pseudo-labeled patient data
-
Kim, J., Shin, H., 2013. Breast cancer survivability prediction using labeled, unlabeled, and pseudo-labeled patient data. J. Am. Med. Inf. Assoc. 20(4), 613-618.
-
(2013)
J. Am. Med. Inf. Assoc.
, vol.20
, Issue.4
, pp. 613-618
-
-
Kim, J.1
Shin, H.2
-
27
-
-
38349031393
-
Machine learning: A review of classification and combining techniques
-
Kotsiantis, S. B., Zaharakis, I. D., Pintelas, P. E., 2006. Machine learning: a review of classification and combining techniques. Artif. Intell. Rev. 26, 159-190.
-
(2006)
Artif. Intell. Rev.
, vol.26
, pp. 159-190
-
-
Kotsiantis, S.B.1
Zaharakis, I.D.2
Pintelas, P.E.3
-
29
-
-
0032730109
-
Artificial neural networks applied to survival prediction in breast cancer
-
Lundin, M., Lundin, J., Burke, H. B., Toikkanen, S., Pylkkänen, L., Joensuu, H., 1999. Artificial neural networks applied to survival prediction in breast cancer. Oncology 57, 281-286.
-
(1999)
Oncology
, vol.57
, pp. 281-286
-
-
Lundin, M.1
Lundin, J.2
Burke, H.B.3
Toikkanen, S.4
Pylkkänen, L.5
Joensuu, H.6
-
30
-
-
78751696355
-
Semi-supervised learning of visual classifiers from web images and text
-
Boutilier, C. Edr., California, USA
-
Morsillo N., Pal C., Nelson R., 2009. Semi-supervised learning of visual classifiers from web images and text. In: Boutilier, C. (Edr.), The Proceedings of the Twenty-First International Joint Conference on Artificial intelligence Pasadena, California, USA, pp. 1169-1174.
-
(2009)
The Proceedings of the Twenty-first International Joint Conference on Artificial Intelligence Pasadena
, pp. 1169-1174
-
-
Morsillo, N.1
Pal, C.2
Nelson, R.3
-
31
-
-
42649123535
-
-
Accessed: 11 July 2011
-
NC Institute. Breast Cancer Statistics, USA, 2010. National Cancer Institute, 2010, 〈http://www.cancer.gov/cancertopics/types/breast〉 (Accessed: 11 July 2011).
-
(2010)
National Cancer Institute, 2010
-
-
-
32
-
-
0003318017
-
Modern heuristic techniques for combinatorial problems
-
Sons, J. W. Ed., USA
-
Peterson C., Söderberg B., 1993. Modern heuristic techniques for combinatorial problems. In: Sons, J. W. (Ed.), Artificial Neural Networks New York, USA, pp. 197-242.
-
(1993)
Artificial Neural Networks New York
, pp. 197-242
-
-
Peterson, C.1
Söderberg, B.2
-
33
-
-
0017873866
-
Regression analysis of grouped survival data with application to breast cancer data
-
Prentice, R. L., Gloeckler, L. A., 1978. Regression analysis of grouped survival data with application to breast cancer data. Biometrics 34, 57-67.
-
(1978)
Biometrics
, vol.34
, pp. 57-67
-
-
Prentice, R.L.1
Gloeckler, L.A.2
-
34
-
-
0035283313
-
Robust classification for imprecise environments
-
Provost, F., Fawcett, T, 2001. Robust classification for imprecise environments. Mach. Learn. 42(3), 203-231.
-
(2001)
Mach. Learn.
, vol.42
, Issue.3
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
35
-
-
0043198674
-
Robust learning with missing data
-
Ramoni, M., Sebastiani, P., 2001. Robust learning with missing data. Mach. Learn. 42(2), 147-170.
-
(2001)
Mach. Learn.
, vol.42
, Issue.2
, pp. 147-170
-
-
Ramoni, M.1
Sebastiani, P.2
-
36
-
-
0342502195
-
Soft margins for AdaBoost
-
Rätsch, G., Onoda, T., Müller, K.-R., 2001. Soft margins for AdaBoost. Mach. Learn. 42(3), 287-320.
-
(2001)
Mach. Learn.
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.-R.3
-
38
-
-
0004094721
-
-
MIT Press, Cambridge, England
-
Schölkopf, B., Smola, AJ., 2002. Learning with Kernels. The MIT Press, Cambridge, England.
-
(2002)
Learning with Kernels
-
-
Schölkopf, B.1
Smola, A.J.2
-
39
-
-
0030325319
-
The use and interpretation of the Friedman test in the analysis of ordinal-scale data in repeated measures designs
-
Sheldon, M. R., Fillyaw, M. J., Thompson, W. D., 1996. The use and interpretation of the Friedman test in the analysis of ordinal-scale data in repeated measures designs. Physiother. Res. Int. 1(4), 221-228.
-
(1996)
Physiother. Res. Int.
, vol.1
, Issue.4
, pp. 221-228
-
-
Sheldon, M.R.1
Fillyaw, M.J.2
Thompson, W.D.3
-
40
-
-
33847676236
-
Neighborhood property-based pattern selection for support vector machines
-
Shin, H., Cho, S., 2007. Neighborhood property-based pattern selection for support vector machines. Neural Comput. 19, 816-855.
-
(2007)
Neural Comput.
, vol.19
, pp. 816-855
-
-
Shin, H.1
Cho, S.2
-
41
-
-
36549013593
-
Graph sharpening plus graph integration: A synergy that improves protein functional classification
-
Shin, H., Lisewski, A. M., Lichtarge, O., 2007. Graph sharpening plus graph integration: a synergy that improves protein functional classification. Bioinformatics 23, 3217-3224.
-
(2007)
Bioinformatics
, vol.23
, pp. 3217-3224
-
-
Shin, H.1
Lisewski, A.M.2
Lichtarge, O.3
-
42
-
-
77957842081
-
Graph sharpening
-
Shin, H., Hill, N. J., Lisewski, A. M., Park, JS., 2010. Graph sharpening. Expert Syst. Appl. 37, 7870-7879.
-
(2010)
Expert Syst. Appl.
, vol.37
, pp. 7870-7879
-
-
Shin, H.1
Hill, N.J.2
Lisewski, A.M.3
Park, J.S.4
-
43
-
-
84872967522
-
-
Siegel, R., Naishadham, D., Jemal, A., 2013. Cancer Stat., CA: Cancer J. Clin., 63; 11-30
-
(2013)
Cancer Stat., CA: Cancer J. Clin.
, vol.63
, pp. 11-30
-
-
Siegel, R.1
Naishadham, D.2
Jemal, A.3
-
45
-
-
33845881963
-
Improved breast cancer prognosis through the combination of clinical and genetic markers
-
Sun, Y., Goodison, S., Li, J., Liu, L., Farmerie, W., 2007. Improved breast cancer prognosis through the combination of clinical and genetic markers. Bioinformatics 23, 30-37.
-
(2007)
Bioinformatics
, vol.23
, pp. 30-37
-
-
Sun, Y.1
Goodison, S.2
Li, J.3
Liu, L.4
Farmerie, W.5
-
46
-
-
65449146949
-
Breast cancer survivability via AdaBoost algorithms
-
Warren, J. R., Yu, P., Yearwood. J., Patrick, J. D., Eds., NSW, Australia
-
Thongkam J., Xu G., Zhang Y., Huang F., 2008. Breast cancer survivability via AdaBoost algorithms. In: Warren, J. R., Yu, P., Yearwood. J., Patrick, J. D., (Eds.), The Proceedings of the second Australasian workshop on Health Data and Knowledge Management Wollongong, NSW, Australia, pp. 55-64.
-
(2008)
The Proceedings of the Second Australasian Workshop on Health Data and Knowledge Management Wollongong
, pp. 55-64
-
-
Thongkam, J.1
Xu, G.2
Zhang, Y.3
Huang, F.4
-
47
-
-
69249220244
-
Towards breast cancer survivability prediction models through improving training space
-
Thongkam, J., Xu, G., Zhang, Y., Huang, F., 2009. Towards breast cancer survivability prediction models through improving training space. Expert Syst. Appl. 36, 12200-12209.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 12200-12209
-
-
Thongkam, J.1
Xu, G.2
Zhang, Y.3
Huang, F.4
-
48
-
-
85031073837
-
-
〈http://cogsys.imm.dtu.dk/toolbox/ann/index.html〉.
-
-
-
-
49
-
-
85031084870
-
-
〈http://sourceforge.net/projects/svm/〉.
-
-
-
-
50
-
-
84888322932
-
-
SSL Matlab codes will be available
-
〈http://www.alphaminers.net〉 (SSL Matlab codes will be available).
-
-
-
-
51
-
-
64149104410
-
Efficient large margin semi-supervised learning
-
Wang, J., 2007. Efficient large margin semi-supervised learning. J. Mach. Learn. Res. 10, 719-742.
-
(2007)
J. Mach. Learn. Res.
, vol.10
, pp. 719-742
-
-
Wang, J.1
-
53
-
-
33749013037
-
Semi-supervised model-based document clustering: A comparative study
-
Zhong, S., 2006. Semi-supervised model-based document clustering: a comparative study. Mach. Learn. 65, 3-29.
-
(2006)
Mach. Learn.
, vol.65
, pp. 3-29
-
-
Zhong, S.1
-
54
-
-
33744955193
-
-
Ph. D. Thesis, School of Computer Science, Carnegie Mellon University, May
-
Zhu X., 2005. Semi-Supervised Learning with Graphs, Ph. D. Thesis, School of Computer Science, Carnegie Mellon University, May.
-
(2005)
Semi-supervised Learning with Graphs
-
-
Zhu, X.1
|