메뉴 건너뛰기




Volumn 57, Issue 4, 1999, Pages 281-286

Artificial neural networks applied to survival prediction in breast cancer

Author keywords

Breast cancer; Neural networks; Survival prediction

Indexed keywords

ADULT; AGED; AREA UNDER THE CURVE; ARTICLE; ARTIFICIAL NEURAL NETWORK; AXILLARY LYMPH NODE; BREAST CANCER; CANCER GRADING; CANCER SURVIVAL; CELL NUCLEUS; CONTROLLED STUDY; DIAGNOSTIC ACCURACY; DIAGNOSTIC ERROR; FEMALE; HISTOLOGY; HUMAN; HUMAN TISSUE; MAJOR CLINICAL STUDY; MITOSIS; PREDICTION AND FORECASTING; PRIORITY JOURNAL; REGRESSION ANALYSIS; TUMOR NECROSIS;

EID: 0032730109     PISSN: 00302414     EISSN: None     Source Type: Journal    
DOI: 10.1159/000012061     Document Type: Article
Times cited : (119)

References (33)
  • 2
    • 0027362788 scopus 로고
    • The American Joint Committee on cancer. Criteria for prognostic factors and for an enhanced prognostic system
    • Burke HB, Henson DE: The American Joint Committee on Cancer. Criteria for prognostic factors and for an enhanced prognostic system. Cancer 1993;72:3131-3135.
    • (1993) Cancer , vol.72 , pp. 3131-3135
    • Burke, H.B.1    Henson, D.E.2
  • 3
    • 0027477364 scopus 로고
    • Multiple prognostic factors and outcome analysis in patients with cancer. Communication from the American Joint Committee on cancer
    • Fielding LP, Henson DE: Multiple prognostic factors and outcome analysis in patients with cancer. Communication from the American Joint Committee on Cancer. Cancer 1993;71: 2426-2429.
    • (1993) Cancer , vol.71 , pp. 2426-2429
    • Fielding, L.P.1    Henson, D.E.2
  • 4
    • 0028788276 scopus 로고
    • Application of artificial neural networks to clinical medicine
    • Baxt WG: Application of artificial neural networks to clinical medicine. Lancet 1995;346: 1135-1138.
    • (1995) Lancet , vol.346 , pp. 1135-1138
    • Baxt, W.G.1
  • 5
    • 0030061822 scopus 로고    scopus 로고
    • Prospective validation of artificial neural network trained to identify acute myocardial infarction
    • Baxt WG, Skora J: Prospective validation of artificial neural network trained to identify acute myocardial infarction. Lancet 1996;347: 12-15.
    • (1996) Lancet , vol.347 , pp. 12-15
    • Baxt, W.G.1    Skora, J.2
  • 6
    • 0030603526 scopus 로고    scopus 로고
    • Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm
    • Dybowski R, Weller P, Chang R, Gant V: Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm. Lancet 1996;347:1146-1150.
    • (1996) Lancet , vol.347 , pp. 1146-1150
    • Dybowski, R.1    Weller, P.2    Chang, R.3    Gant, V.4
  • 7
    • 0028207158 scopus 로고
    • Complexity, chaos and human physiology: The justification for non-linear neural computational analysis
    • Baxt WG: Complexity, chaos and human physiology: The justification for non-linear neural computational analysis. Cancer Lett 1994;77: 85-93.
    • (1994) Cancer Lett , vol.77 , pp. 85-93
    • Baxt, W.G.1
  • 8
    • 0005172629 scopus 로고    scopus 로고
    • Statistical analysis of complex systems in biomedicine
    • Fisher D, Lenz HJ (eds): Berlin, Springer
    • Burke HB: Statistical analysis of complex systems in biomedicine; in Fisher D, Lenz HJ (eds): Learning from Data: AI and Statistics V. Berlin, Springer, 1996, vol 112, pp 251-258.
    • (1996) Learning from Data: AI and Statistics V , vol.112 , pp. 251-258
    • Burke, H.B.1
  • 11
    • 0030951433 scopus 로고    scopus 로고
    • Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with non-small cell lung carcinoma
    • Jefferson MF, Pendleton N, Lucas SB, Horan MA: Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with non-small cell lung carcinoma. Cancer 1997;79: 1338-1342.
    • (1997) Cancer , vol.79 , pp. 1338-1342
    • Jefferson, M.F.1    Pendleton, N.2    Lucas, S.B.3    Horan, M.A.4
  • 12
    • 0029970396 scopus 로고    scopus 로고
    • The new era in breast cancer. Invasion, size, and nodal involvement dramatically decreasing as a result of mammographic screening
    • Cady B, Stone MD, Schuler JG, Thakur R, Wanner MA, Lavin PT: The new era in breast cancer. Invasion, size, and nodal involvement dramatically decreasing as a result of mammographic screening. Arch Surg 1996;131:301-308.
    • (1996) Arch Surg , vol.131 , pp. 301-308
    • Cady, B.1    Stone, M.D.2    Schuler, J.G.3    Thakur, R.4    Wanner, M.A.5    Lavin, P.T.6
  • 13
    • 0031008077 scopus 로고    scopus 로고
    • Predictors of axillary lymph node metastases in patients with T1 breast carcinoma
    • Barth A, Craig PH, Silverstein MJ: Predictors of axillary lymph node metastases in patients with T1 breast carcinoma. Cancer 1997;79: 1918-1922.
    • (1997) Cancer , vol.79 , pp. 1918-1922
    • Barth, A.1    Craig, P.H.2    Silverstein, M.J.3
  • 15
    • 0028073175 scopus 로고
    • Prediction of axillary lymph node status in breast cancer patients by use of prognostic indicators
    • Ravdin PM, De Laurentiis M, Vendely T, Clark GM: Prediction of axillary lymph node status in breast cancer patients by use of prognostic indicators. J Natl Cancer Inst 1994;86: 1771-1775.
    • (1994) J Natl Cancer Inst , vol.86 , pp. 1771-1775
    • Ravdin, P.M.1    De Laurentiis, M.2    Vendely, T.3    Clark, G.M.4
  • 19
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • Touretzky DS (ed): San Mateo, Morgan Kaufmann
    • Fahlman SE, Lebiere C: The cascade-correlation learning architecture; in Touretzky DS (ed): Advances in Neural Information Processing Systems. San Mateo, Morgan Kaufmann, 1990, vol 2, pp 524-532.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 21
    • 0018079655 scopus 로고
    • Basic principles of ROC analysis
    • Metz CE: Basic principles of ROC analysis. Semin Nucl Med 1978;8:283-298.
    • (1978) Semin Nucl Med , vol.8 , pp. 283-298
    • Metz, C.E.1
  • 22
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • Hanley JA, McNeil BJ: A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983;148:839-843.
    • (1983) Radiology , vol.148 , pp. 839-843
    • Hanley, J.A.1    McNeil, B.J.2
  • 24
    • 0027529453 scopus 로고
    • Artificial neural networks for predicting failure to survive following in-hospital cardiopulmonary resuscitation
    • Ebell MH: Artificial neural networks for predicting failure to survive following in-hospital cardiopulmonary resuscitation. J Fam Pract 1993;36:297-303.
    • (1993) J Fam Pract , vol.36 , pp. 297-303
    • Ebell, M.H.1
  • 25
    • 0032076928 scopus 로고    scopus 로고
    • Artificial neural network model of survival in patients treated with irradiation with and without concurrent chemotherapy for advanced carcinoma of the head and neck
    • Bryce TJ, Dewhirst MW, Floyd CE Jr, Hars V, Brizel DM: Artificial neural network model of survival in patients treated with irradiation with and without concurrent chemotherapy for advanced carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 1998;41:339-345.
    • (1998) Int J Radiat Oncol Biol Phys , vol.41 , pp. 339-345
    • Bryce, T.J.1    Dewhirst, M.W.2    Floyd C.E., Jr.3    Hars, V.4    Brizel, D.M.5
  • 27
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • Tu JV: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 1996;49:1225-1231.
    • (1996) J Clin Epidemiol , vol.49 , pp. 1225-1231
    • Tu, J.V.1
  • 28
    • 0000243355 scopus 로고
    • Learning in artificial neural networks. A statistical perspective
    • White H: Learning in artificial neural networks. A statistical perspective. Neural Comput 1989;1:425-464.
    • (1989) Neural Comput , vol.1 , pp. 425-464
    • White, H.1
  • 29
    • 0028328448 scopus 로고
    • A technique for using neural network analysis to perform survival analysis of censored data
    • De Laurentiis M, Ravdin PM: A technique for using neural network analysis to perform survival analysis of censored data. Cancer Lett 1994;77:127-138.
    • (1994) Cancer Lett , vol.77 , pp. 127-138
    • De Laurentiis, M.1    Ravdin, P.M.2
  • 30
    • 0028855843 scopus 로고
    • A neural network model for survival data
    • Faraggi D, Simon R: A neural network model for survival data. Stat Med 1995;14:73-82.
    • (1995) Stat Med , vol.14 , pp. 73-82
    • Faraggi, D.1    Simon, R.2
  • 32
    • 0011197140 scopus 로고
    • Hierarchical neural networks for survival analysis
    • Ohno-Machado L, Walker MG, Musen MA: Hierarchical neural networks for survival analysis. Medinfo 1995;8:828-832.
    • (1995) Medinfo , vol.8 , pp. 828-832
    • Ohno-Machado, L.1    Walker, M.G.2    Musen, M.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.