메뉴 건너뛰기




Volumn 36, Issue 10, 2009, Pages 12200-12209

Toward breast cancer survivability prediction models through improving training space

Author keywords

Breast cancer survivability prediction models; Data mining; Outliers; Over sampling

Indexed keywords

10-FOLD CROSS-VALIDATION; BIAS AND VARIANCE; BREAST CANCER; BREAST CANCER SURVIVABILITY PREDICTION MODELS; F-MEASURE; HYBRID APPROACH; MEASUREMENT METHODS; MEDICAL RESEARCH; OUTLIERS; OVER-SAMPLING; PREDICTION MODEL; QUALITY DATA; RECEIVER OPERATING CHARACTERISTIC CURVES; SKEWED DATA; SUPPORT VECTOR CLASSIFICATION; SURVIVAL PREDICTION; TRAINING DATA;

EID: 69249220244     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2009.04.067     Document Type: Article
Times cited : (46)

References (52)
  • 4
    • 38049148757 scopus 로고    scopus 로고
    • Blanco, Á., Ricket, A. M., & Marti{dotless}́n-Merino, M. (2007). Combining SVM classifiers for e-mail anti-spam filtering. In Proceedings of the ninth international work-conference on artificial neural networks (4507, pp. 903-910). Berlin/Heidelberg: Springer.
    • Blanco, Á., Ricket, A. M., & Marti{dotless}́n-Merino, M. (2007). Combining SVM classifiers for e-mail anti-spam filtering. In Proceedings of the ninth international work-conference on artificial neural networks (Vol. 4507, pp. 903-910). Berlin/Heidelberg: Springer.
  • 6
    • 0036202506 scopus 로고    scopus 로고
    • A computer program for period analysis of cancer patient survival
    • Brenner H., Gefeller O., and Hakulinen T. A computer program for period analysis of cancer patient survival. Journal of Cancer European 38 (2002) 690-695
    • (2002) Journal of Cancer European , vol.38 , pp. 690-695
    • Brenner, H.1    Gefeller, O.2    Hakulinen, T.3
  • 7
    • 0029221739 scopus 로고
    • Artificial neural networks for use in the diagnosis and treatment of breast cancer
    • Bridgett N.A., Brandt J., and Harris C.J. Artificial neural networks for use in the diagnosis and treatment of breast cancer. Journal of e Prints 409 (1995) 448-453
    • (1995) Journal of e Prints , vol.409 , pp. 448-453
    • Bridgett, N.A.1    Brandt, J.2    Harris, C.J.3
  • 12
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: A comparison of three data mining methods
    • Delen D., Walker G., and Kadam A. Predicting breast cancer survivability: A comparison of three data mining methods. Journal of Artificial Intelligence in Medicine 34 (2005) 113-127
    • (2005) Journal of Artificial Intelligence in Medicine , vol.34 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 17
    • 33746865585 scopus 로고    scopus 로고
    • Three-class ROC analysis - The equal error utility assumption and the optimality of three-class ROC surface using the ideal observer
    • He X., and Frey E.C. Three-class ROC analysis - The equal error utility assumption and the optimality of three-class ROC surface using the ideal observer. IEEE Transactions on Medical Imaging, Medical Imaging (2006) 979-986
    • (2006) IEEE Transactions on Medical Imaging, Medical Imaging , pp. 979-986
    • He, X.1    Frey, E.C.2
  • 20
  • 23
    • 33750692306 scopus 로고    scopus 로고
    • Text categorization based on artificial neural networks
    • King I. (Ed), Springer-Verlag, Berlin/Heidelberg
    • Li C.H., and Park S.C. Text categorization based on artificial neural networks. In: King I. (Ed). Neural information processing (2006), Springer-Verlag, Berlin/Heidelberg 302-311
    • (2006) Neural information processing , pp. 302-311
    • Li, C.H.1    Park, S.C.2
  • 24
    • 40949099766 scopus 로고    scopus 로고
    • Optimizing F-measure with support vector machines
    • Musicant D.R., Kumar V., and Ozgur A. Optimizing F-measure with support vector machines. Journal of Flairs 16 (2003) 356-360
    • (2003) Journal of Flairs , vol.16 , pp. 356-360
    • Musicant, D.R.1    Kumar, V.2    Ozgur, A.3
  • 26
    • 69249203907 scopus 로고    scopus 로고
    • National Cancer Institute of Thailand
    • National Cancer Institute of Thailand (2006). Cancer in Thailand 1995-1997. .
    • (2006) Cancer in Thailand 1995-1997
  • 27
    • 0035551937 scopus 로고    scopus 로고
    • Modeling medical prognosis: Survival analysis techniques
    • Ohno-Machado L. Modeling medical prognosis: Survival analysis techniques. Journal of Biomedical Informatics 34 (2001) 428-439
    • (2001) Journal of Biomedical Informatics , vol.34 , pp. 428-439
    • Ohno-Machado, L.1
  • 31
    • 69249211356 scopus 로고    scopus 로고
    • Quinlan, J. R. (1993). C4.5: Programs for machine learning.
    • Quinlan, J. R. (1993). C4.5: Programs for machine learning.
  • 35
    • 56349093726 scopus 로고    scopus 로고
    • An analysis of data selection methods on classifiers accuracy measures
    • Thongkam J., Xu G., and Zhang Y. An analysis of data selection methods on classifiers accuracy measures. Journal of Korn Ken University 35 (2008) 1-10
    • (2008) Journal of Korn Ken University , vol.35 , pp. 1-10
    • Thongkam, J.1    Xu, G.2    Zhang, Y.3
  • 39
    • 0034504471 scopus 로고    scopus 로고
    • Tsumoto, S, 2000, Problems with mining medical data. In The twenty-fourth annual international conference on computer software and applications pp. 467-468
    • Tsumoto, S. (2000). Problems with mining medical data. In The twenty-fourth annual international conference on computer software and applications (pp. 467-468).
  • 41
    • 33746071857 scopus 로고    scopus 로고
    • Ensemble methods for noise elimination in classification problems
    • Windeatt T., and Roli F. (Eds), Springer-Verlag, Berlin/Heidelberg
    • Verbaeten S., and Assche A.V. Ensemble methods for noise elimination in classification problems. In: Windeatt T., and Roli F. (Eds). Multiple classifier systems (2003), Springer-Verlag, Berlin/Heidelberg 317-325
    • (2003) Multiple classifier systems , pp. 317-325
    • Verbaeten, S.1    Assche, A.V.2
  • 44
    • 64549137426 scopus 로고    scopus 로고
    • Classification of imbalanced data by using the SMOTE algorithm and locally linear embedding
    • In The
    • Wang, J., Xu, M., Wang, H., & Zhang, J. (2006). Classification of imbalanced data by using the SMOTE algorithm and locally linear embedding. In The eight international conference on signal processing (Vol. 3, pp. 16-20).
    • (2006) eight international conference on signal processing , vol.3 , pp. 16-20
    • Wang, J.1    Xu, M.2    Wang, H.3    Zhang, J.4
  • 45
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • Weiss G.M., and Provost F. Learning when training data are costly: The effect of class distribution on tree induction. Journal of Artificial Intelligence Research 19 (2003) 315-354
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 49
    • 33750338026 scopus 로고    scopus 로고
    • The effect of imbalanced data sets on LDA: A theoretical and empirical analysis
    • Xie J., and Qiu Z. The effect of imbalanced data sets on LDA: A theoretical and empirical analysis. Journal of Pattern Recognition 40 2 (2007) 557-562
    • (2007) Journal of Pattern Recognition , vol.40 , Issue.2 , pp. 557-562
    • Xie, J.1    Qiu, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.