-
4
-
-
64149104410
-
On efficient large margin semisupervised learning: Method and theory
-
J. Wang et al., On efficient large margin semisupervised learning: Method and theory, Journal of Machine Learning Research 10 (2009), 719-742.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 719-742
-
-
Wang, J.1
-
6
-
-
58049115217
-
Prediction of protein function from networks
-
O. Chapelle et al., eds, ed: MIT press
-
H. Shin and K. Tsuda, Prediction of protein function from networks, in: Semi-Supervised Learning, O. Chapelle et al., eds, ed: MIT press, 2006, pp. 339-352.
-
(2006)
Semi-Supervised Learning
, pp. 339-352
-
-
Shin, H.1
Tsuda, K.2
-
7
-
-
36549013593
-
Graph sharpening plus graph integration: A synergy that improves protein functional classification
-
H. Shin et al., Graph sharpening plus graph integration: A synergy that improves protein functional classification, Bioinformatics 23 (2007), 3217-3224.
-
(2007)
Bioinformatics
, vol.23
, pp. 3217-3224
-
-
Shin, H.1
-
8
-
-
64749107977
-
Soft-supervised learning for text classification
-
Honolulu, Hawaii
-
A. Subramanya and J. Bilmes, Soft-supervised learning for text classification, in: Conference on Empirical Methods in Natural Language Processing, Honolulu, Hawaii, (2008), 1090-1099.
-
(2008)
Conference on Empirical Methods in Natural Language Processing
, pp. 1090-1099
-
-
Subramanya, A.1
Bilmes, J.2
-
9
-
-
84859921107
-
A high-performance semi-supervised learning method for text chunking
-
Ann Arbor, Michigan
-
R.K. Ando and T. Zhang, A high-performance semi-supervised learning method for text chunking, in: Annual Meeting on Association for Computational Linguistics, Ann Arbor, Michigan, (2005), 1-9.
-
(2005)
Annual Meeting on Association for Computational Linguistics
, pp. 1-9
-
-
Ando, R.K.1
Zhang, T.2
-
10
-
-
33749571730
-
Semi-supervised time series classification
-
Philadelphia, USA
-
L. Wei and E. Keogh, Semi-supervised time series classification, in: International Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, (2006), 748-753.
-
(2006)
International Conference on Knowledge Discovery and Data Mining
, pp. 748-753
-
-
Wei, L.1
Keogh, E.2
-
11
-
-
19344375744
-
Semi-supervised methods to predict patient survival from gene expression data
-
E. Bair and R. Tibshirani, Semi-supervised methods to predict patient survival from gene expression data, PLoS Biology 2 (2004), 511-522.
-
(2004)
PLoS Biology
, vol.2
, pp. 511-522
-
-
Bair, E.1
Tibshirani, R.2
-
12
-
-
77958102750
-
Semi-supervised method for gene expression data Classification cation with gaussian fields and harmonic functions
-
Tampa, FL
-
Y.-C. Gong and C.-L. Chen, Semi-supervised method for gene expression data Classification cation with gaussian fields and harmonic functions, in: International Conference on Pattern Recognition, Tampa, FL, (2008), 1-4.
-
(2008)
International Conference on Pattern Recognition
, pp. 1-4
-
-
Gong, Y.-C.1
Chen, C.-L.2
-
13
-
-
78751696355
-
Semi-supervised learning of visual classifiers from web images and text
-
California, USA
-
N. Morsillo et al., Semi-supervised learning of visual classifiers from web images and text, in: International Joint Conference on Artificial Intelligence, California, USA, (2009), 1169-1174.
-
(2009)
International Joint Conference on Artificial Intelligence
, pp. 1169-1174
-
-
Morsillo, N.1
-
16
-
-
0034241361
-
Gradient-based optimization of hyperparameters
-
Y. Bengio, Gradient-based optimization of hyperparameters, Neural Computation 12 (2000), 1889-1900.
-
(2000)
Neural Computation
, vol.12
, pp. 1889-1900
-
-
Bengio, Y.1
-
17
-
-
0030211964
-
Bagging predictors
-
L. Breiman, Bagging predictors, Machine Learning 24 (1996) 123-140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
20
-
-
0030365938
-
Error correlation and error reduction in ensemble classifiers
-
K. Tumer and J. Ghosh, Error correlation and error reduction in ensemble classifiers, Connection Science 8 (1996), 385-404.
-
(1996)
Connection Science
, vol.8
, pp. 385-404
-
-
Tumer, K.1
Ghosh, J.2
-
23
-
-
84880903985
-
Graph-based semi-supervised learning as a generative model
-
J. He et al., Graph-based semi-supervised learning as a generative model, in: International Joint Conference on Artificial Intelligence, Hyderabad, India, (2007), 2492-2497.
-
(2007)
International Joint Conference on Artificial Intelligence, Hyderabad, India
, pp. 2492-2497
-
-
He, J.1
-
25
-
-
60949096789
-
Semi-supervised discriminative classification with application to tumorous tissues segmentation of MR brain images
-
Y. Song et al., Semi-supervised discriminative classification with application to tumorous tissues segmentation of MR brain images, Pattern Analysis and Applications 12 (2009), 99-115.
-
(2009)
Pattern Analysis and Applications
, vol.12
, pp. 99-115
-
-
Song, Y.1
-
26
-
-
31844443290
-
Regression and regularization on large
-
J Shawe-Taylor and Y. Singer, eds
-
M. Belkin et al., Regression and regularization on large, in: COLT 2004 LNCS (LNAI), J. Shawe-Taylor and Y. Singer, eds, 3120 (2003), 624-638.
-
(2003)
COLT 2004 LNCS (LNAI)
, vol.3120
, pp. 624-638
-
-
Belkin, M.1
-
27
-
-
4243066295
-
Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time
-
D.A. Spielman and S.-H. Teng, Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time, Journal of the ACM 51 (2004), 385-463.
-
(2004)
Journal of the ACM
, vol.51
, pp. 385-463
-
-
Spielman, D.A.1
Teng, S.-H.2
-
32
-
-
0036080160
-
Bagging, boosting and the random subspace method for linear classifiers
-
M. Skurichina and R.P.W. Duin, Bagging, boosting and the random subspace method for linear classifiers, Pattern Analysis and Applications 5 (2002), 121-135.
-
(2002)
Pattern Analysis and Applications
, vol.5
, pp. 121-135
-
-
Skurichina, M.1
Duin, R.P.W.2
-
33
-
-
52549127071
-
ROC curve, lift chart and calibration plot
-
M. Vuk and T. Curk, ROC curve, lift chart and calibration plot, Metodoloski Zvezki 3 (2006), 89-108.
-
(2006)
Metodoloski Zvezki
, vol.3
, pp. 89-108
-
-
Vuk, M.1
Curk, T.2
-
34
-
-
14644390912
-
Using AUC and accuracy in evaluating learning algorithms
-
J. Huang and C.X. Ling, Using AUC and accuracy in evaluating learning algorithms, IEEE Educational Activities Department 17 (2005), 299-310.
-
(2005)
IEEE Educational Activities Department
, vol.17
, pp. 299-310
-
-
Huang, J.1
Ling, C.X.2
-
35
-
-
33646023117
-
An introduction to ROC analysis
-
T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters 27 (2006), 861-874.
-
(2006)
Pattern Recognition Letters
, vol.27
, pp. 861-874
-
-
Fawcett, T.1
-
36
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demsar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning Research 7 (2006), 1-30.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
37
-
-
58049115217
-
Prediction of protein function from networks
-
O. Chapelle et al., eds, ed Cambridge, Massachusetts, London, England: The MIT Press
-
H. Shin and K. Tsuda, Prediction of protein function from networks, in: Semi-Supervised Learning, O. Chapelle et al., eds, ed Cambridge, Massachusetts, London, England: The MIT Press, 2006, pp. 361-376.
-
(2006)
Semi-Supervised Learning
, pp. 361-376
-
-
Shin, H.1
Tsuda, K.2
-
38
-
-
27544435126
-
Fast protein classification with multiple networks
-
K. Tsuda et al., Fast protein classification with multiple networks, Bioinformatics 21 (2005), 59-65.
-
(2005)
Bioinformatics
, vol.21
, pp. 59-65
-
-
Tsuda, K.1
|