메뉴 건너뛰기




Volumn 17, Issue 3, 2013, Pages 387-398

Sharpened graph ensemble for semi-supervised learning

Author keywords

Data mining; ensemble learning; graph sharpening; machine learning; noise reduction; parameter selection; semi supervised learning

Indexed keywords

ENSEMBLE LEARNING; GENERALIZATION ABILITY; GRAPH SHARPENING; PARAMETER SELECTION; PERFORMANCE OF ALGORITHM; REAL-WORLD PROBLEM; SEMI-SUPERVISED LEARNING; TECHNICAL DIFFICULTIES;

EID: 84878897014     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/IDA-130585     Document Type: Article
Times cited : (7)

References (38)
  • 4
    • 64149104410 scopus 로고    scopus 로고
    • On efficient large margin semisupervised learning: Method and theory
    • J. Wang et al., On efficient large margin semisupervised learning: Method and theory, Journal of Machine Learning Research 10 (2009), 719-742.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 719-742
    • Wang, J.1
  • 6
    • 58049115217 scopus 로고    scopus 로고
    • Prediction of protein function from networks
    • O. Chapelle et al., eds, ed: MIT press
    • H. Shin and K. Tsuda, Prediction of protein function from networks, in: Semi-Supervised Learning, O. Chapelle et al., eds, ed: MIT press, 2006, pp. 339-352.
    • (2006) Semi-Supervised Learning , pp. 339-352
    • Shin, H.1    Tsuda, K.2
  • 7
    • 36549013593 scopus 로고    scopus 로고
    • Graph sharpening plus graph integration: A synergy that improves protein functional classification
    • H. Shin et al., Graph sharpening plus graph integration: A synergy that improves protein functional classification, Bioinformatics 23 (2007), 3217-3224.
    • (2007) Bioinformatics , vol.23 , pp. 3217-3224
    • Shin, H.1
  • 11
    • 19344375744 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • E. Bair and R. Tibshirani, Semi-supervised methods to predict patient survival from gene expression data, PLoS Biology 2 (2004), 511-522.
    • (2004) PLoS Biology , vol.2 , pp. 511-522
    • Bair, E.1    Tibshirani, R.2
  • 12
    • 77958102750 scopus 로고    scopus 로고
    • Semi-supervised method for gene expression data Classification cation with gaussian fields and harmonic functions
    • Tampa, FL
    • Y.-C. Gong and C.-L. Chen, Semi-supervised method for gene expression data Classification cation with gaussian fields and harmonic functions, in: International Conference on Pattern Recognition, Tampa, FL, (2008), 1-4.
    • (2008) International Conference on Pattern Recognition , pp. 1-4
    • Gong, Y.-C.1    Chen, C.-L.2
  • 13
    • 78751696355 scopus 로고    scopus 로고
    • Semi-supervised learning of visual classifiers from web images and text
    • California, USA
    • N. Morsillo et al., Semi-supervised learning of visual classifiers from web images and text, in: International Joint Conference on Artificial Intelligence, California, USA, (2009), 1169-1174.
    • (2009) International Joint Conference on Artificial Intelligence , pp. 1169-1174
    • Morsillo, N.1
  • 16
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyperparameters
    • Y. Bengio, Gradient-based optimization of hyperparameters, Neural Computation 12 (2000), 1889-1900.
    • (2000) Neural Computation , vol.12 , pp. 1889-1900
    • Bengio, Y.1
  • 17
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Machine Learning 24 (1996) 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 20
    • 0030365938 scopus 로고    scopus 로고
    • Error correlation and error reduction in ensemble classifiers
    • K. Tumer and J. Ghosh, Error correlation and error reduction in ensemble classifiers, Connection Science 8 (1996), 385-404.
    • (1996) Connection Science , vol.8 , pp. 385-404
    • Tumer, K.1    Ghosh, J.2
  • 25
    • 60949096789 scopus 로고    scopus 로고
    • Semi-supervised discriminative classification with application to tumorous tissues segmentation of MR brain images
    • Y. Song et al., Semi-supervised discriminative classification with application to tumorous tissues segmentation of MR brain images, Pattern Analysis and Applications 12 (2009), 99-115.
    • (2009) Pattern Analysis and Applications , vol.12 , pp. 99-115
    • Song, Y.1
  • 26
    • 31844443290 scopus 로고    scopus 로고
    • Regression and regularization on large
    • J Shawe-Taylor and Y. Singer, eds
    • M. Belkin et al., Regression and regularization on large, in: COLT 2004 LNCS (LNAI), J. Shawe-Taylor and Y. Singer, eds, 3120 (2003), 624-638.
    • (2003) COLT 2004 LNCS (LNAI) , vol.3120 , pp. 624-638
    • Belkin, M.1
  • 27
    • 4243066295 scopus 로고    scopus 로고
    • Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time
    • D.A. Spielman and S.-H. Teng, Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time, Journal of the ACM 51 (2004), 385-463.
    • (2004) Journal of the ACM , vol.51 , pp. 385-463
    • Spielman, D.A.1    Teng, S.-H.2
  • 32
    • 0036080160 scopus 로고    scopus 로고
    • Bagging, boosting and the random subspace method for linear classifiers
    • M. Skurichina and R.P.W. Duin, Bagging, boosting and the random subspace method for linear classifiers, Pattern Analysis and Applications 5 (2002), 121-135.
    • (2002) Pattern Analysis and Applications , vol.5 , pp. 121-135
    • Skurichina, M.1    Duin, R.P.W.2
  • 33
    • 52549127071 scopus 로고    scopus 로고
    • ROC curve, lift chart and calibration plot
    • M. Vuk and T. Curk, ROC curve, lift chart and calibration plot, Metodoloski Zvezki 3 (2006), 89-108.
    • (2006) Metodoloski Zvezki , vol.3 , pp. 89-108
    • Vuk, M.1    Curk, T.2
  • 34
    • 14644390912 scopus 로고    scopus 로고
    • Using AUC and accuracy in evaluating learning algorithms
    • J. Huang and C.X. Ling, Using AUC and accuracy in evaluating learning algorithms, IEEE Educational Activities Department 17 (2005), 299-310.
    • (2005) IEEE Educational Activities Department , vol.17 , pp. 299-310
    • Huang, J.1    Ling, C.X.2
  • 35
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters 27 (2006), 861-874.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 36
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning Research 7 (2006), 1-30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 37
    • 58049115217 scopus 로고    scopus 로고
    • Prediction of protein function from networks
    • O. Chapelle et al., eds, ed Cambridge, Massachusetts, London, England: The MIT Press
    • H. Shin and K. Tsuda, Prediction of protein function from networks, in: Semi-Supervised Learning, O. Chapelle et al., eds, ed Cambridge, Massachusetts, London, England: The MIT Press, 2006, pp. 361-376.
    • (2006) Semi-Supervised Learning , pp. 361-376
    • Shin, H.1    Tsuda, K.2
  • 38
    • 27544435126 scopus 로고    scopus 로고
    • Fast protein classification with multiple networks
    • K. Tsuda et al., Fast protein classification with multiple networks, Bioinformatics 21 (2005), 59-65.
    • (2005) Bioinformatics , vol.21 , pp. 59-65
    • Tsuda, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.