메뉴 건너뛰기




Volumn 20, Issue 4, 2013, Pages 613-618

Breast cancer survivability prediction using labeled, unlabeled, and pseudo-labeled patient data

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ALGORITHM; AREA UNDER THE CURVE; ARTICLE; BREAST CANCER; CANCER EPIDEMIOLOGY; CANCER SURVIVAL; DATA BASE; FEMALE; HUMAN; MACHINE LEARNING; PATIENT CODING; PREDICTION;

EID: 84882786709     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1136/amiajnl-2012-001570     Document Type: Article
Times cited : (83)

References (32)
  • 1
    • 84882743564 scopus 로고    scopus 로고
    • American Cancer Society. Cancer Facts & Figures 2010. Atlanta: American Cancer Society
    • American Cancer Society. Cancer Facts & Figures 2010. Atlanta: American Cancer Society, 2010.
    • (2010)
  • 2
    • 84882759926 scopus 로고    scopus 로고
    • National Cancer Institute. Breast Cancer Statistics, USA, 2010, National Cancer Institute, (accessed: 11 Jul 2011)
    • National Cancer Institute. Breast Cancer Statistics, USA, 2010, National Cancer Institute, 2010. http://www.cancer.gov/cancertopics/types/breast (accessed: 11 Jul 2011).
    • (2010)
  • 3
    • 33845881963 scopus 로고    scopus 로고
    • Improved breast cancer prognosis through the combination of clinical and genetic markers
    • Sun Y, Goodison S, Li J, et al. Improved breast cancer prognosis through the combination of clinical and genetic markers. Bioinformatics 2007;23:30-7.
    • (2007) Bioinformatics , vol.23 , pp. 30-37
    • Sun, Y.1    Goodison, S.2    Li, J.3
  • 4
    • 84870547848 scopus 로고    scopus 로고
    • wFDT-Weighted Fuzzy decision trees for prognosis of breast cancer survivability
    • Roddick JF, Li J, Christen P, Kennedy PJ, eds. Glenelg, South Australia
    • Khan U, Shin H, Choi JP, et al. wFDT-Weighted Fuzzy decision trees for prognosis of breast cancer survivability. In: Roddick JF, Li J, Christen P, Kennedy PJ, eds. Proceedings of the Seventh Australasian Data Mining Conference. Glenelg, South Australia, 2008:141-52.
    • (2008) Proceedings of the Seventh Australasian Data Mining Conference , pp. 141-152
    • Khan, U.1    Shin, H.2    Choi, J.P.3
  • 5
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: a comparison of three data mining methods
    • Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Int Med 2005;34:113-27.
    • (2005) Artif Int Med , vol.34 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 6
    • 0036202506 scopus 로고    scopus 로고
    • A computer program for period analysis of cancer patient survival
    • Brenner H, Gefeller O, Hakulinen T. A computer program for period analysis of cancer patient survival. Eur J Cancer 2002;38:690-5.
    • (2002) Eur J Cancer , vol.38 , pp. 690-695
    • Brenner, H.1    Gefeller, O.2    Hakulinen, T.3
  • 7
    • 33744961676 scopus 로고    scopus 로고
    • Applications of machine learning in cancer prediction and prognosis
    • Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform 2006;2:59-78.
    • (2006) Cancer Inform , vol.2 , pp. 59-78
    • Cruz, J.A.1    Wishart, D.S.2
  • 9
    • 69249220244 scopus 로고    scopus 로고
    • Towards breast cancer survivability prediction models through improving training space
    • Thongkam J, Xu G, Zhang Y, et al. Towards breast cancer survivability prediction models through improving training space. Expert Syst Appl 2009;36:12200-09.
    • (2009) Expert Syst Appl , vol.36 , pp. 12200-12209
    • Thongkam, J.1    Xu, G.2    Zhang, Y.3
  • 12
    • 33749013037 scopus 로고    scopus 로고
    • Semi-supervised model-based document clustering: a comparative study
    • Zhong S. Semi-supervised model-based document clustering: a comparative study. Mach Learn 2006;65:3-29.
    • (2006) Mach Learn , vol.65 , pp. 3-29
    • Zhong, S.1
  • 14
    • 19344375744 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • Bair E, Tibshirani R. Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol 2004;2:0511-22.
    • (2004) PLoS Biol , vol.2 , pp. 0511-0522
    • Bair, E.1    Tibshirani, R.2
  • 20
    • 84882755401 scopus 로고    scopus 로고
    • SEER. Surveillance, Epidemiology and End Results program National Cancer Institute, (accessed 11 Jul 2011)
    • SEER. Surveillance, Epidemiology and End Results program National Cancer Institute. 2010. http://www.seer.cancer.gov (accessed 11 Jul 2011).
    • (2010)
  • 23
    • 36549013593 scopus 로고    scopus 로고
    • Graph sharpening plus graph integration: a synergy that improves protein functional classification
    • Shin H, Lisewski AM, Lichtarge O. Graph sharpening plus graph integration: a synergy that improves protein functional classification. Bioinformatics 2007;23:3217-24.
    • (2007) Bioinformatics , vol.23 , pp. 3217-3224
    • Shin, H.1    Lisewski, A.M.2    Lichtarge, O.3
  • 25
    • 33749252873 scopus 로고    scopus 로고
    • Semi-supervised learning
    • Cambridge, England: The MIT Press
    • Chapelle O, Schölkopf B, Zien A. Semi-supervised learning. Cambridge, England: The MIT Press, 2006:3-14.
    • (2006) , pp. 3-14
    • Chapelle, O.1    Schölkopf, B.2    Zien, A.3
  • 26
    • 64149104410 scopus 로고    scopus 로고
    • Efficient large margin semi-supervised learning
    • Wang J. Efficient large margin semi-supervised learning. J Mach Learn Res 2007;10:719-42.
    • (2007) J Mach Learn Res , vol.10 , pp. 719-742
    • Wang, J.1
  • 30
    • 33750525529 scopus 로고    scopus 로고
    • Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)
    • Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 2006;43:1223-32.
    • (2006) J Appl Ecol , vol.43 , pp. 1223-1232
    • Allouche, O.1    Tsoar, A.2    Kadmon, R.3
  • 31
    • 33646417252 scopus 로고    scopus 로고
    • Artificial neural networks
    • Sydenham P, Thorn R, eds. London: John Wiley & Sons Inc
    • Abraham A. Artificial neural networks. Sydenham P, Thorn R, eds. In: Handbook of Measuring System Design. London: John Wiley & Sons Inc, 2005.
    • (2005) Handbook of Measuring System Design
    • Abraham, A.1
  • 32
    • 33847676236 scopus 로고    scopus 로고
    • Neighborhood property-based pattern selection for support vector machines
    • Shin H, Cho S. Neighborhood property-based pattern selection for support vector machines. Neural Comput 2007;19:816-55.
    • (2007) Neural Comput , vol.19 , pp. 816-855
    • Shin, H.1    Cho, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.