메뉴 건너뛰기




Volumn , Issue , 2008, Pages

Semi-supervised method for gene expression data classification with Gaussian fields and harmonic functions

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION ACCURACY; GAUSSIAN FIELD; GENE EXPRESSION DATA; LABELED AND UNLABELED DATA; MACHINE-LEARNING; MICROARRAY DATA; MICROARRAY DATA SETS; REAL-WORLD APPLICATION; SEMI-SUPERVISED METHOD; SUPERVISED CLASSIFICATION; TRAINING EXAMPLE;

EID: 77958102750     PISSN: 10514651     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (10)

References (13)
  • 1
    • 77958099195 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U. ALON and N. B. et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. PNAS.
    • PNAS
    • Alon, U.1
  • 2
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. ICML, 2001.
    • (2001) ICML
    • Blum, A.1    Chawla, S.2
  • 3
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T. R. Golub, D. K. Slonim, and P. T., et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 1999.
    • (1999) Science
    • Golub, T.R.1    Slonim, D.K.2
  • 4
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gege expression ratios in lung cancer and mesothelioma
    • G. Gordon, R. Jensen, and L. H., et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gege expression ratios in lung cancer and mesothelioma. Cancer Research.
    • Cancer Research
    • Gordon, G.1    Jensen, R.2
  • 5
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 2002.
    • (2002) Machine Learning
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 6
    • 63549146505 scopus 로고    scopus 로고
    • A comparative study of classification methods for microarray data analysis
    • H. Hu, J. Li, A. Plank, H. Wang, and G. Daggard. A comparative study of classification methods for microarray data analysis. AusDM, 2003.
    • (2003) AusDM
    • Hu, H.1    Li, J.2    Plank, A.3    Wang, H.4    Daggard., G.5
  • 7
    • 57849084709 scopus 로고    scopus 로고
    • Ensembles of cascading trees
    • J. Li and H. Liu. Ensembles of cascading trees. ICDM, 2003.
    • (2003) ICDM
    • Li, J.1    Liu, H.2
  • 8
    • 63549099556 scopus 로고    scopus 로고
    • Discovery of significant rules for classifying cancer diagnosis data
    • J. Li, H. Liu, S.-K. Ng, and L. Wong. Discovery of significant rules for classifying cancer diagnosis data. ECCB, 2003.
    • (2003) ECCB
    • Li, J.1    Liu, H.2    Ng, S.-K.3    Wong, L.4
  • 9
    • 77958085136 scopus 로고    scopus 로고
    • Use of proteomic patterns in serum to identify ovarian cancer
    • E. PetricoinIII and A. A., et al. Use of proteomic patterns in serum to identify ovarian cancer. The lancet 359.
    • The Lancet , vol.359
    • Petricoiniii, E.1
  • 10
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary dna microarray
    • M. Schena, D. Shalon, R. Davis, and P. Brown. Quantitative monitoring of gene expression patterns with a complementary dna microarray. Science, 1995.
    • (1995) Science
    • Schena, M.1    Shalon, D.2    Davis, R.3    Brown, P.4
  • 11
    • 2942596534 scopus 로고    scopus 로고
    • Ensemble machine learning on gene expression data for cancer classification
    • A. C. Tan and D. Gilbert. Ensemble machine learning on gene expression data for cancer classification. Applied Bioinformatics, 2003.
    • (2003) Applied Bioinformatics
    • Tan, A.C.1    Gilbert, D.2
  • 12
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • University of Wisconsin-Madison
    • X. Zhu. Semi-supervised learning literature survey. Technical Report 1530, Computer Sciences, University of Wisconsin-Madison, 2005.
    • (2005) Technical Report 1530, Computer Sciences
    • Zhu, X.1
  • 13
    • 1942484430 scopus 로고    scopus 로고
    • Learning using gaussian fields and harmonic functions
    • Semisupervised
    • X. Zhu, Z. Ghahramani, and J. Lafferty. Semisupervised learning using gaussian fields and harmonic functions. ICML, 2003.
    • (2003) ICML
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.