메뉴 건너뛰기




Volumn 10, Issue , 2009, Pages 719-742

On efficient large margin semisupervised learning: Method and theory

Author keywords

Classification; Difference convex programming; Nonconvex minimization; Regulanzation; Support vectors

Indexed keywords

CLASSIFICATION; DIFFERENCE CONVEX PROGRAMMING; NONCONVEX MINIMIZATION; REGULANZATION; SUPPORT VECTORS;

EID: 64149104410     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (41)

References (46)
  • 1
    • 18744410770 scopus 로고    scopus 로고
    • Understanding the Yarowsky algorithm
    • S. Abney. Understanding the Yarowsky algorithm. Computat. Linguistics, 30: 365-395, 2004.
    • (2004) Computat. Linguistics , vol.30 , pp. 365-395
    • Abney, S.1
  • 2
  • 3
    • 57849155344 scopus 로고    scopus 로고
    • Semi-supervised learning with an explicit label-error model for misclassified data
    • M. Amini, and P. Gallinari. Semi-supervised learning with an explicit label-error model for misclassified data. In IJCAI, 2003.
    • (2003) IJCAI
    • Amini, M.1    Gallinari, P.2
  • 4
    • 0001445010 scopus 로고    scopus 로고
    • Solving a class of linearly constrained indefinite quadratic problems by D.C. algorithms
    • L. An and P. Tao. Solving a class of linearly constrained indefinite quadratic problems by D.C. algorithms. J. of Global Optimization, 11:253-285, 1997.
    • (1997) J. of Global Optimization , vol.11 , pp. 253-285
    • An, L.1    Tao, P.2
  • 5
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • R. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Res., 6:1817-1853, 2005.
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1817-1853
    • Ando, R.1    Zhang, T.2
  • 7
  • 12
    • 0005319337 scopus 로고
    • A system of scoring linkage data, with special reference to the pied factors in mice
    • R. A. Fisher. A system of scoring linkage data, with special reference to the pied factors in mice. Amen Nat., 80:568-578, 1946.
    • (1946) Amen Nat , vol.80 , pp. 568-578
    • Fisher, R.A.1
  • 17
    • 64149103562 scopus 로고    scopus 로고
    • A. N. Kolmogorov and V. M. Tihomirov. e-entropy and e-capacity of sets in function spaces. Uspekhi Mat. Nauk., 14:3-86, 1959. [In Russian. English translation, Ameri. Math. Soc. Transl., 14:277-364, 1961.
    • A. N. Kolmogorov and V. M. Tihomirov. e-entropy and e-capacity of sets in function spaces. Uspekhi Mat. Nauk., 14:3-86, 1959. [In Russian. English translation, Ameri. Math. Soc. Transl., 14:277-364, 1961.
  • 18
    • 0036258405 scopus 로고    scopus 로고
    • Support vector machines and the Bayes rule in classification
    • Y. Lin. Support vector machines and the Bayes rule in classification. Data Mining and Knowledge Discovery, 6:259-275, 2002.
    • (2002) Data Mining and Knowledge Discovery , vol.6 , pp. 259-275
    • Lin, Y.1
  • 20
    • 33745638149 scopus 로고    scopus 로고
    • Multicategory ψ-learning
    • Y. Liu and X. Shen. Multicategory ψ-learning. J. Amer. Statist. Assoc., 101:500-509, 2006.
    • (2006) J. Amer. Statist. Assoc , vol.101 , pp. 500-509
    • Liu, Y.1    Shen, X.2
  • 23
    • 0030765448 scopus 로고    scopus 로고
    • MIPS: A database for protein sequences, homology data and yeast genome information
    • H. Mewes, K. Albermann, K. Heumann, S. Liebl and F. Pfeiffer. MIPS: a database for protein sequences, homology data and yeast genome information. Nucleic Acids Res., 25:28-30, 2002.
    • (2002) Nucleic Acids Res , vol.25 , pp. 28-30
    • Mewes, H.1    Albermann, K.2    Heumann, K.3    Liebl, S.4    Pfeiffer, F.5
  • 24
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • K. Nigam, A, McCallum, S. Thrun and T. Mitchell . Text classification from labeled and unlabeled documents using EM. Mach. Learn., 39:103-134, 1998.
    • (1998) Mach. Learn , vol.39 , pp. 103-134
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 25
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • MIT press, Cambridge
    • J. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in Large Margin Classifiers, pages 61-74, MIT press, Cambridge, 1999.
    • (1999) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.1
  • 26
    • 34547675831 scopus 로고    scopus 로고
    • Generalization Error Bounds in Semi-supervised Classification Under the Cluster Assumption
    • P. Rigollet. Generalization Error Bounds in Semi-supervised Classification Under the Cluster Assumption. J. Mach. Learn. Res., 8:1369-1392, 2007.
    • (2007) J. Mach. Learn. Res , vol.8 , pp. 1369-1392
    • Rigollet, P.1
  • 28
    • 0031321079 scopus 로고    scopus 로고
    • On method of sieves and penalization
    • X. Shen. On method of sieves and penalization. Ann. Statist., 25:2555-2591, 1997.
    • (1997) Ann. Statist , vol.25 , pp. 2555-2591
    • Shen, X.1
  • 30
    • 59349112940 scopus 로고    scopus 로고
    • X. Shen and L, Wang. Generalization error for multi-class margin classification. Electronic J. of Statist., 1:307-330,2007.
    • X. Shen and L, Wang. Generalization error for multi-class margin classification. Electronic J. of Statist., 1:307-330,2007.
  • 31
    • 21844489169 scopus 로고
    • Convergence rate of sieve estimates
    • X. Shen and W. Wong. Convergence rate of sieve estimates. Ann. Statist., 22:580-615, 1994.
    • (1994) Ann. Statist , vol.22 , pp. 580-615
    • Shen, X.1    Wong, W.2
  • 32
    • 84970983203 scopus 로고    scopus 로고
    • Unlabeled data: Now it helps, now it doesn't
    • A. Singh, R. Nowak and X. Zhu. Unlabeled data: Now it helps, now it doesn't. In NIPS, 2008.
    • (2008) NIPS
    • Singh, A.1    Nowak, R.2    Zhu, X.3
  • 33
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • A. Tsybakov, Optimal aggregation of classifiers in statistical learning, Ann. Statist., 32:135-166, 2004.
    • (2004) Ann. Statist , vol.32 , pp. 135-166
    • Tsybakov, A.1
  • 35
    • 0003241883 scopus 로고
    • Spline models for observational data
    • SIAM, Philadelphia
    • G. Wahba. Spline models for observational data. Series in Applied Mathematics, Vol. 59, SIAM, Philadelphia, 1990.
    • (1990) Series in Applied Mathematics , vol.59
    • Wahba, G.1
  • 36
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV
    • edited by B. Schoelkopf, C. Burges and A. Smola, MIT Press, Cambridge
    • G. Wahba. Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. In Advances in Kernel Methods: Support Vector Learning, edited by B. Schoelkopf, C. Burges and A. Smola, MIT Press, Cambridge, 1998.
    • (1998) Advances in Kernel Methods: Support Vector Learning
    • Wahba, G.1
  • 37
    • 35548968410 scopus 로고    scopus 로고
    • Large margin semi-supervised learning
    • J. Wang andX. Shen. Large margin semi-supervised learning. J. Mach. Learn. Res., 8:1867-1891, 2007.
    • (2007) J. Mach. Learn. Res , vol.8 , pp. 1867-1891
    • Wang andX, J.1    Shen2
  • 38
    • 40249094631 scopus 로고    scopus 로고
    • Probability estimation for large margin classifiers
    • J. Wang, X. Shen and Y. Liu. Probability estimation for large margin classifiers. Biometrika, 95:149- 167, 2008.
    • (2008) Biometrika , vol.95 , pp. 149-167
    • Wang, J.1    Shen, X.2    Liu, Y.3
  • 39
    • 64149109051 scopus 로고    scopus 로고
    • On transductive support vector machine
    • J. Wang, X. Shen and W Pan. On transductive support vector machine. Contemp. Math., 43:7-19, 2007.
    • (2007) Contemp. Math , vol.43 , pp. 7-19
    • Wang, J.1    Shen, X.2    Pan, W.3
  • 40
    • 31044452892 scopus 로고    scopus 로고
    • Gene function prediction by a combined analysis of gene expression data and protein-protein interaction data
    • G. Xiao and W. Pan, Gene function prediction by a combined analysis of gene expression data and protein-protein interaction data. J. Bioinformatics and Computat. Biol., 3:1371-1390, 2005.
    • (2005) J. Bioinformatics and Computat. Biol , vol.3 , pp. 1371-1390
    • Xiao, G.1    Pan, W.2
  • 42
    • 0005004572 scopus 로고    scopus 로고
    • A probability analysis on the value of unlabeled data for classification problems
    • T. Zhang and F. Oles. A probability analysis on the value of unlabeled data for classification problems. In ICML, 2000.
    • (2000) ICML
    • Zhang, T.1    Oles, F.2
  • 43
    • 0036790999 scopus 로고    scopus 로고
    • Transitive functional annotation by shortest-path analysis of gene expression data
    • X. Zhou, M. Kao and W. Wong. Transitive functional annotation by shortest-path analysis of gene expression data. Proc. Nat. Acad. Sci., 99:12783-12788, 2000.
    • (2000) Proc. Nat. Acad. Sci , vol.99 , pp. 12783-12788
    • Zhou, X.1    Kao, M.2    Wong, W.3
  • 44
    • 15944424353 scopus 로고    scopus 로고
    • Kernel logistic regression and the import vector machine
    • J. Zhu and T. Hastie. Kernel logistic regression and the import vector machine. J. Computat. Graph. Statist., 14:185-205,2005.
    • (2005) J. Computat. Graph. Statist , vol.14 , pp. 185-205
    • Zhu, J.1    Hastie, T.2
  • 45
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani and J. Lafferty. Semi-supervised learning using Gaussian fields and harmonic functions. In ICML, 2003.
    • (2003) ICML
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 46
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • Technical Report 1530, University of Wisconsin, Madison
    • X. Zhu. Semi-supervised learning literature survey. Technical Report 1530, University of Wisconsin, Madison, 2005.
    • (2005)
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.