메뉴 건너뛰기




Volumn 39, Issue 8, 2012, Pages 7004-7014

A data clustering algorithm for stratified data partitioning in artificial neural network

Author keywords

Artificial neural network; Custom design clustering algorithm; Data clustering; Data partitioning; Fuzzy clustering; Genetic algorithm; Self organizing map

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CUSTOM DESIGN; DATA CLUSTERING; DATA PARTITIONING; SELF ORGANIZING;

EID: 84857653016     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2012.01.047     Document Type: Article
Times cited : (26)

References (40)
  • 3
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • G.J. Bowden, H.R. Maier, and G.C. Dandy Optimal division of data for neural network models in water resources applications Water Resources Research 38 2 2002 2-1 2-11
    • (2002) Water Resources Research , vol.38 , Issue.2 , pp. 21-211
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 4
    • 72549101359 scopus 로고    scopus 로고
    • Feature extraction for mental fatigue and relaxation states based on systematic evaluation considering individual difference
    • +16
    • L. Chen, T. Sugi, S. Shirakawa, J. Zou, and M. Nakamura Feature extraction for mental fatigue and relaxation states based on systematic evaluation considering individual difference IEEJ Transactions on Electronics, Information and Systems 129 2 2009 302 307 +16
    • (2009) IEEJ Transactions on Electronics, Information and Systems , vol.129 , Issue.2 , pp. 302-307
    • Chen, L.1    Sugi, T.2    Shirakawa, S.3    Zou, J.4    Nakamura, M.5
  • 7
    • 0000152448 scopus 로고
    • Forecasting with neural networks: An application using bankruptcy data
    • D. Fletcher, and E. Goss Forecasting with neural networks: An application using bankruptcy data Information & Management 24 3 1993 159 167
    • (1993) Information & Management , vol.24 , Issue.3 , pp. 159-167
    • Fletcher, D.1    Goss, E.2
  • 9
    • 44949260972 scopus 로고    scopus 로고
    • Wavelet-based multi resolution analysis for data cleaning and its application to water quality management systems
    • L. He, G.H. Huang, G.M. Zeng, and H.W. Lu Wavelet-based multi resolution analysis for data cleaning and its application to water quality management systems Expert Systems with Applications 35 3 2008 1301 1310
    • (2008) Expert Systems with Applications , vol.35 , Issue.3 , pp. 1301-1310
    • He, L.1    Huang, G.H.2    Zeng, G.M.3    Lu, H.W.4
  • 10
    • 0034284680 scopus 로고    scopus 로고
    • The effects of data preprocessing in the determination of coagulant dosing rate
    • D. Joo, D. Choi, and H. Park The effects of data preprocessing in the determination of coagulant dosing rate Water Research 34 2000 3295 3302
    • (2000) Water Research , vol.34 , pp. 3295-3302
    • Joo, D.1    Choi, D.2    Park, H.3
  • 13
    • 0003209045 scopus 로고    scopus 로고
    • Self organizing maps
    • Springer Berlin, Heidelberg, New York
    • T. Kohonen Self organizing maps Springer series in information sciences Vol. 30 2001 Springer Berlin, Heidelberg, New York
    • (2001) Springer Series in Information Sciences , vol.30
    • Kohonen, T.1
  • 15
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • H.R. Maier, and G.C. Dandy Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications Environmental Model Software 15 2000 101 124
    • (2000) Environmental Model Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 16
    • 74149090502 scopus 로고    scopus 로고
    • Data splitting for artificial neural networks using SOM-based stratified sampling
    • R.J. May, H.R. Maier, and G.C. Dandy Data splitting for artificial neural networks using SOM-based stratified sampling Neural Networks 23 2 2010 283 294
    • (2010) Neural Networks , vol.23 , Issue.2 , pp. 283-294
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3
  • 17
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • A.W. Minns, and M.J. Hall Artificial neural networks as rainfall-runoff models Hydrological Sciences Journal 41 3 1996 399 417
    • (1996) Hydrological Sciences Journal , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 20
    • 70449708973 scopus 로고    scopus 로고
    • Optimal feature selection for support vector machines
    • M.H. Nguyen, and F. Torre Optimal feature selection for support vector machines Pattern Recognition 43 3 2010 584 591
    • (2010) Pattern Recognition , vol.43 , Issue.3 , pp. 584-591
    • Nguyen, M.H.1    Torre, F.2
  • 21
    • 0028210405 scopus 로고
    • The influence of data preprocessing on the robustness and parsimony of multivariate calibration models
    • O.E. Noord The influence of data preprocessing on the robustness and parsimony of multivariate calibration models Chemometrics and Intelligent Laboratory Systems 23 1994 65 70
    • (1994) Chemometrics and Intelligent Laboratory Systems , vol.23 , pp. 65-70
    • Noord, O.E.1
  • 22
    • 70449529503 scopus 로고    scopus 로고
    • A novel efficient technique for extracting valid feature information
    • S.S. Park, Y.G. Shin, and D.S. Jang A novel efficient technique for extracting valid feature information Expert Systems with Applications 37 3 2010 2654 2660
    • (2010) Expert Systems with Applications , vol.37 , Issue.3 , pp. 2654-2660
    • Park, S.S.1    Shin, Y.G.2    Jang, D.S.3
  • 23
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • P.J. Rousseeuw Silhouettes: A graphical aid to the interpretation and validation of cluster analysis Computational and Applied Mathematics 20 1987 53 65
    • (1987) Computational and Applied Mathematics , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 26
    • 61549123318 scopus 로고    scopus 로고
    • Sparse data division using data segmentation and Kohonen network for neural network and geostatistical ore grade modeling in nome offshore placer deposit
    • B. Samanta, S. Bandopadhyay, R. Ganguli, and S. Dutta Sparse data division using data segmentation and Kohonen network for neural network and geostatistical ore grade modeling in nome offshore placer deposit Natural Resources Research 13 3 2004 189 200
    • (2004) Natural Resources Research , vol.13 , Issue.3 , pp. 189-200
    • Samanta, B.1    Bandopadhyay, S.2    Ganguli, R.3    Dutta, S.4
  • 27
    • 33745298172 scopus 로고    scopus 로고
    • Data segmentation and genetic algorithms for sparse data division in nome placer gold grade estimation using neural network and geostatistics
    • B. Samanta, S. Bandopadhyay, and R. Ganguli Data segmentation and genetic algorithms for sparse data division in nome placer gold grade estimation using neural network and geostatistics Exploration and Mining Geology 11 1-4 2004 69 76
    • (2004) Exploration and Mining Geology , vol.11 , Issue.14 , pp. 69-76
    • Samanta, B.1    Bandopadhyay, S.2    Ganguli, R.3
  • 28
    • 16444364474 scopus 로고    scopus 로고
    • Data division for developing neural networks applied to geotechnical engineering
    • M.A. Shahin, H.R. Maier, and M.B. Jaksa Data division for developing neural networks applied to geotechnical engineering Journal of Computing in Civil Engineering 18 2 2004 105 114
    • (2004) Journal of Computing in Civil Engineering , vol.18 , Issue.2 , pp. 105-114
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 29
    • 84857650633 scopus 로고
    • Regularization as a substitute for preprocessing of data in neural network training
    • J. Sjoberg Regularization as a substitute for preprocessing of data in neural network training Artificial Intelligence in Real-Time Control 1992 31 35
    • (1992) Artificial Intelligence in Real-Time Control , pp. 31-35
    • Sjoberg, J.1
  • 30
    • 0001857274 scopus 로고
    • Selecting data for neural networks
    • R. Stein Selecting data for neural networks AI Expert 8 2 1993 42 47
    • (1993) AI Expert , vol.8 , Issue.2 , pp. 42-47
    • Stein, R.1
  • 31
    • 0001857275 scopus 로고
    • Preprocessing data for neural networks
    • R. Stein Preprocessing data for neural networks AI Expert 8 3 1993 32 37
    • (1993) AI Expert , vol.8 , Issue.3 , pp. 32-37
    • Stein, R.1
  • 33
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural network
    • A.S. Tokar, and P.A. Johnson Rainfall-runoff modeling using artificial neural network Journal of Hydraulic Engineering 4 3 1999 232 239
    • (1999) Journal of Hydraulic Engineering , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 34
    • 17944365058 scopus 로고    scopus 로고
    • Samples selection for artificial neural network training in preliminary structural design
    • F. Tong, and X. Liu Samples selection for artificial neural network training in preliminary structural design Tsinghua Science and Technology 10 2 2005 233 239
    • (2005) Tsinghua Science and Technology , vol.10 , Issue.2 , pp. 233-239
    • Tong, F.1    Liu, X.2
  • 36
    • 70449707168 scopus 로고    scopus 로고
    • A feature extraction method for use with bimodal biometrics
    • Y. Xu, D. Zhang, and J.Y. Yang A feature extraction method for use with bimodal biometrics Pattern Recognition 43 3 2010 1106 1115
    • (2010) Pattern Recognition , vol.43 , Issue.3 , pp. 1106-1115
    • Xu, Y.1    Zhang, D.2    Yang, J.Y.3
  • 37
    • 0033684356 scopus 로고    scopus 로고
    • Wavelet packet feature extraction for vibration monitoring
    • G.G. Yen, and K.C. Lin Wavelet packet feature extraction for vibration monitoring IEEE Transactions on Industrial Electronics 47 3 2000 650 667
    • (2000) IEEE Transactions on Industrial Electronics , vol.47 , Issue.3 , pp. 650-667
    • Yen, G.G.1    Lin, K.C.2
  • 38
    • 70450223136 scopus 로고    scopus 로고
    • A pattern-based outlier detection method identifying abnormal attributes in software project data
    • K.A. Yoon, and D.H. Bae A pattern-based outlier detection method identifying abnormal attributes in software project data Information and Software Technology 52 2 2010 137 151
    • (2010) Information and Software Technology , vol.52 , Issue.2 , pp. 137-151
    • Yoon, K.A.1    Bae, D.H.2
  • 40
    • 43049104542 scopus 로고    scopus 로고
    • Dynamic intelligent cleaning model of dirty electric load data
    • X. Zhang, and C. Sun Dynamic intelligent cleaning model of dirty electric load data Energy Conversion and Management 49 4 2008 564 569
    • (2008) Energy Conversion and Management , vol.49 , Issue.4 , pp. 564-569
    • Zhang, X.1    Sun, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.