메뉴 건너뛰기




Volumn , Issue , 2010, Pages 477-488

An introduction to deep learning

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION TASKS; CURSE OF DIMENSIONALITY; DEEP LEARNING; LEARNING APPROACH; LEARNING SCHEMES; MULTIPLE LAYERS; NONLINEAR PROCESSING;

EID: 84887116981     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (35)

References (46)
  • 2
    • 77954662106 scopus 로고    scopus 로고
    • The curse of highly variable functions for local kernel machines
    • Y. Bengio, O. Delalleau, and N. Le Roux. The curse of highly variable functions for local kernel machines. In NIPS, 2005.
    • (2005) NIPS
    • Bengio, Y.1    Delalleau, O.2    Le Roux, N.3
  • 4
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets. Neur. Comput., 18:1527-1554, 2006.
    • (2006) Neur. Comput , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 5
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. In Parallel Distributed Processing, pages 194-281. 1986.
    • (1986) Parallel Distributed Processing , pp. 194-281
    • Smolensky, P.1
  • 8
    • 84954424613 scopus 로고    scopus 로고
    • A unified energy-based framework for unsupervised learning
    • M. Ranzato, Y.-L. Boureau, S. Chopra, and Y. LeCun. A unified energy-based framework for unsupervised learning. In AISTATS, 2007.
    • (2007) AISTATS
    • Ranzato, M.1    Boureau, Y.-L.2    Chopra, S.3    Lecun, Y.4
  • 9
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann machines. In ICML, 2010.
    • (2010) ICML
    • Nair, V.1    Hinton, G.E.2
  • 11
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neur. Comput., 14:1771-1800, 2002.
    • (2002) Neur. Comput , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 12
    • 67651049775 scopus 로고    scopus 로고
    • Justifying and generalizing contrastive divergence
    • Y. Bengio and O. Delalleau. Justifying and generalizing contrastive divergence. Neur. Comput., 21:1601-1621, 2009.
    • (2009) Neur. Comput , vol.21 , pp. 1601-1621
    • Bengio, Y.1    Delalleau, O.2
  • 13
    • 84887100846 scopus 로고    scopus 로고
    • Training RBMs depending on the signs of the CD approximation of the log-likelihood derivatives
    • A. Fischer and C. Igel. Training RBMs depending on the signs of the CD approximation of the log-likelihood derivatives. In ESANN, 2011.
    • (2011) ESANN
    • Fischer, A.1    Igel, C.2
  • 15
    • 0024220237 scopus 로고
    • Auto-association by multilayer perceptrons and singular value decomposition
    • H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular value decomposition. Biological Cybernetics, 59:291-294, 1988.
    • (1988) Biological Cybernetics , vol.59 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 16
    • 0024732792 scopus 로고
    • Connectionist learning procedures
    • G. E. Hinton. Connectionist learning procedures. Artificial Intelligence, 40:185-234, 1989.
    • (1989) Artificial Intelligence , vol.40 , pp. 185-234
    • Hinton, G.E.1
  • 17
    • 0034153465 scopus 로고    scopus 로고
    • Nonlinear autoassociation is not equivalent to PCA
    • N. Japkowicz, S. J. Hanson, and M. A. Gluck. Nonlinear autoassociation is not equivalent to PCA. Neur. Comput., 12:531-545, 2000.
    • (2000) Neur. Comput , vol.12 , pp. 531-545
    • Japkowicz, N.1    Hanson, S.J.2    Gluck, M.A.3
  • 18
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In ICML, 2008.
    • (2008) ICML
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 19
    • 50249093806 scopus 로고    scopus 로고
    • An empirical evaluation of deep architectures on problems with many factors of variation
    • H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of deep architectures on problems with many factors of variation. In ICML, 2007.
    • (2007) ICML
    • Larochelle, H.1    Erhan, D.2    Courville, A.3    Bergstra, J.4    Bengio, Y.5
  • 20
    • 85112276587 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • M. A. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient learning of sparse representations with an energy-based model. In NIPS, 2006.
    • (2006) NIPS
    • Ranzato, M.A.1    Poultney, C.2    Chopra, S.3    Lecun, Y.4
  • 21
    • 85161966246 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • M. Ranzato, Y-L. Boureau, and Y. LeCun. Sparse feature learning for deep belief networks. In NIPS, 2008.
    • (2008) NIPS
    • Ranzato, M.1    Boureau, Y.-L.2    Lecun, Y.3
  • 22
    • 80053286337 scopus 로고    scopus 로고
    • Dynamic auto-encoders for semantic indexing
    • P. Mirowski, M. Ranzato, and Y. LeCun. Dynamic auto-encoders for semantic indexing. In NIPS WS8, 2010.
    • (2010) NIPS WS8
    • Mirowski, P.1    Ranzato, M.2    LeCun, Y.3
  • 23
    • 78149327741 scopus 로고    scopus 로고
    • Kernel methods for deep learning
    • Y. Cho and L. Saul. Kernel methods for deep learning. In NIPS, 2009.
    • (2009) NIPS
    • Cho, Y.1    Saul, L.2
  • 24
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. J. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neur. Comput., 10:1299-1319, 1998.
    • (1998) Neur. Comput , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.-R.3
  • 26
    • 1942516826 scopus 로고    scopus 로고
    • Kernel PLS-SVC for linear and nonlinear classification
    • R. Rosipal, L. J. Trejo, and B. Matthews. Kernel PLS-SVC for linear and nonlinear classification. In ICML, 2003.
    • (2003) ICML
    • Rosipal, R.1    Trejo, L.J.2    Matthews, B.3
  • 28
  • 29
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? In ICCV, 2009.
    • (2009) ICCV
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    LeCun, Y.4
  • 31
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In ICML, 2009.
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 32
    • 70450177775 scopus 로고    scopus 로고
    • Learning invariant features through topographic filter maps
    • K. Kavukcuoglu, M. A. Ranzato, R. Fergus, and Y. LeCun. Learning invariant features through topographic filter maps. In CVPR, 2009.
    • (2009) CVPR
    • Kavukcuoglu, K.1    Ranzato, M.A.2    Fergus, R.3    LeCun, Y.4
  • 35
    • 84863380535 scopus 로고    scopus 로고
    • Unsupervised feature learning for audio classification using convolutional deep belief networks
    • H. Lee, Y. Largman, P. Pham, and A. Y. Ng. Unsupervised feature learning for audio classification using convolutional deep belief networks. In NIPS, 2009.
    • (2009) NIPS
    • Lee, H.1    Largman, Y.2    Pham, P.3    Ng, A.Y.4
  • 36
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. In ICML, 2008.
    • (2008) ICML
    • Collobert, R.1    Weston, J.2
  • 37
    • 85162037149 scopus 로고    scopus 로고
    • Using deep belief nets to learn covariance kernels for gaussian processes
    • R. Salakhutdinov and G. E. Hinton. Using deep belief nets to learn covariance kernels for gaussian processes. In NIPS, 2008.
    • (2008) NIPS
    • Salakhutdinov, R.1    Hinton, G.E.2
  • 38
    • 84886992819 scopus 로고    scopus 로고
    • Modeling pigeon behaviour using a conditional restricted Boltzmann machine
    • M. D. Zeiler, G. W. Taylor, N. F. Troje, and G. E. Hinton. Modeling pigeon behaviour using a conditional restricted Boltzmann machine. In ESANN, 2009.
    • (2009) ESANN
    • Zeiler, M.D.1    Taylor, G.W.2    Troje, N.F.3    Hinton, G.E.4
  • 39
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313:504-507, 2006.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 41
    • 84887042736 scopus 로고    scopus 로고
    • Using very deep autoencoders for content-based image retrieval
    • A. Krizhevsky and G. E. Hinton. Using very deep autoencoders for content-based image retrieval. In ESANN, 2011.
    • (2011) ESANN
    • Krizhevsky, A.1    Hinton, G.E.2
  • 42
    • 84879850729 scopus 로고    scopus 로고
    • Factored 3-way restricted Boltzmann machines for modeling natural images
    • M. Ranzato, A. Krizhevsky, and G. E. Hinton. Factored 3-way restricted Boltzmann machines for modeling natural images. In AISTATS, 2010.
    • (2010) AISTATS
    • Ranzato, M.1    Krizhevsky, A.2    Hinton, G.E.3
  • 43
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res., 2010.
    • (2010) J. Mach. Learn. Res
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 46
    • 85083866926 scopus 로고    scopus 로고
    • Unsupervised layer-wise model selection in deep neural networks
    • L. Arnold, H. Paugam-Moisy, and M. Sebag. Unsupervised layer-wise model selection in deep neural networks. In ECAI, 2010.
    • (2010) ECAI
    • Arnold, L.1    Paugam-Moisy, H.2    Sebag, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.