메뉴 건너뛰기




Volumn 33, Issue 12, 2013, Pages 1407-1415

Unraveling toxicological mechanisms and predicting toxicity classes with gene dysregulation networks

Author keywords

Biomarkers; Classification; Network; Regulation; Skin sensitization; Toxicogenomics

Indexed keywords

ACTIVATING TRANSCRIPTION FACTOR 3; BIOLOGICAL MARKER; HEME OXYGENASE 1; IRRITANT AGENT; PROTEIN; PROTEIN HSPA1B; PROTEIN OXSR1; PROTEIN PPP1R15A; PROTEIN ZFAND2A; TRANSCRIPTION FACTOR MAFF; TRISTETRAPROLIN; UNCLASSIFIED DRUG;

EID: 84886090148     PISSN: 0260437X     EISSN: 10991263     Source Type: Journal    
DOI: 10.1002/jat.2800     Document Type: Article
Times cited : (6)

References (36)
  • 1
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barabasi A-L, Albert R. 1999. Emergence of scaling in random networks. Science 286(5439): 509-512.
    • (1999) Science , vol.286 , Issue.5439 , pp. 509-512
    • Barabasi, A.-L.1    Albert, R.2
  • 2
    • 0034520353 scopus 로고    scopus 로고
    • Heat shock proteins: the fountainhead of innate and adaptive immune responses
    • Basu S, Srivastava PK. 2000. Heat shock proteins: the fountainhead of innate and adaptive immune responses. Cell Stress Chaperones 5: 443-451.
    • (2000) Cell Stress Chaperones , vol.5 , pp. 443-451
    • Basu, S.1    Srivastava, P.K.2
  • 3
    • 77953913791 scopus 로고    scopus 로고
    • From 'differential expression' to 'differential networking' - identification of dysfunctional regulatory networks in disease
    • De la Fuente A. 2010. From 'differential expression' to 'differential networking' - identification of dysfunctional regulatory networks in disease. Trends Genet. 26: 326-333.
    • (2010) Trends Genet. , vol.26 , pp. 326-333
    • De la Fuente, A.1
  • 4
    • 80052838800 scopus 로고    scopus 로고
    • Hypoxia-inducible factor-1α mRNA: a new target for destabilization by tristetraprolin in endothelial cells
    • Chamboredon S, Ciais D, Desroches-Castan A, Savi P, Bono F, Feige JJ, Cherradi N. 2011. Hypoxia-inducible factor-1α mRNA: a new target for destabilization by tristetraprolin in endothelial cells. Mol. Biol. Cell 22(18): 3366-3378.
    • (2011) Mol. Biol. Cell , vol.22 , Issue.18 , pp. 3366-3378
    • Chamboredon, S.1    Ciais, D.2    Desroches-Castan, A.3    Savi, P.4    Bono, F.5    Feige, J.J.6    Cherradi, N.7
  • 5
    • 65549155929 scopus 로고    scopus 로고
    • Identifying set-wise differential co-expression in gene expression microarray data
    • Cho BS, Kim J, Kim JH. 2009. Identifying set-wise differential co-expression in gene expression microarray data. BMC Bioinformatics 10: 109.
    • (2009) BMC Bioinformatics , vol.10 , pp. 109
    • Cho, B.S.1    Kim, J.2    Kim, J.H.3
  • 6
    • 70350682038 scopus 로고    scopus 로고
    • Statistical methods for gene set co-expression analysis
    • Choi Y, Kendziorski C. 2009. Statistical methods for gene set co-expression analysis. Bioinformatics 25: 2780-2786.
    • (2009) Bioinformatics , vol.25 , pp. 2780-2786
    • Choi, Y.1    Kendziorski, C.2
  • 7
    • 28944444652 scopus 로고    scopus 로고
    • Differential coexpression analysis using microarray data and its applications to human cancer
    • Choi JK, Yu U, Yoo OJ, Kim S. 2005. Differential coexpression analysis using microarray data and its applications to human cancer. Bioinformatics 21: 4348-4355.
    • (2005) Bioinformatics , vol.21 , pp. 4348-4355
    • Choi, J.K.1    Yu, U.2    Yoo, O.J.3    Kim, S.4
  • 10
    • 62749083987 scopus 로고    scopus 로고
    • Detecting intergene correlation changes in microarray analysis: a new approach to gene selection
    • Hu R, Qui X, Glazko G, Klebanov L, Yakovlev A. 2009. Detecting intergene correlation changes in microarray analysis: a new approach to gene selection. BMC Bioinformat. 10: 20.
    • (2009) BMC Bioinformat. , vol.10 , pp. 20
    • Hu, R.1    Qui, X.2    Glazko, G.3    Klebanov, L.4    Yakovlev, A.5
  • 11
    • 34848816795 scopus 로고    scopus 로고
    • Structure and function: heat shock proteins and adaptive immunity
    • Javid B, MacAry PA, Lehner PJ. 2007. Structure and function: heat shock proteins and adaptive immunity. J. Immunol. 179: 2035-2040.
    • (2007) J. Immunol. , vol.179 , pp. 2035-2040
    • Javid, B.1    MacAry, P.A.2    Lehner, P.J.3
  • 13
    • 80053091886 scopus 로고    scopus 로고
    • Biomarker discovery using statistically significant gene sets
    • Kim H, Watkinson J, Anastassiou D. 2011. Biomarker discovery using statistically significant gene sets. J. Comput. Biol. 18(10): 1329-1338.
    • (2011) J. Comput. Biol. , vol.18 , Issue.10 , pp. 1329-1338
    • Kim, H.1    Watkinson, J.2    Anastassiou, D.3
  • 14
    • 34247854865 scopus 로고    scopus 로고
    • Cadmium-responsive element of the human heme oxygenase-1 gene mediates heat shock factor 1-dependent transcriptional activation
    • Koizumi S, Gong P, Suzuki K, Murata M. 2007. Cadmium-responsive element of the human heme oxygenase-1 gene mediates heat shock factor 1-dependent transcriptional activation. J. Biol. Chem. 282: 8715-8723.
    • (2007) J. Biol. Chem. , vol.282 , pp. 8715-8723
    • Koizumi, S.1    Gong, P.2    Suzuki, K.3    Murata, M.4
  • 16
    • 10244219943 scopus 로고    scopus 로고
    • A statisitical method for identifying differential gene-gene co-expression patterns
    • Lai Y, Wu B, Chen L, Zhao H. 2004. A statisitical method for identifying differential gene-gene co-expression patterns. Bioinformatics 20: 3146-3155.
    • (2004) Bioinformatics , vol.20 , pp. 3146-3155
    • Lai, Y.1    Wu, B.2    Chen, L.3    Zhao, H.4
  • 18
    • 24044440971 scopus 로고    scopus 로고
    • BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks
    • Maere S, Heymans K, Kuiper M. 2005. BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks. Bioinformatics 21: 3448-3449.
    • (2005) Bioinformatics , vol.21 , pp. 3448-3449
    • Maere, S.1    Heymans, K.2    Kuiper, M.3
  • 20
    • 59949086432 scopus 로고    scopus 로고
    • Minet: a R/Bioconductor package for inferring large transcriptional networks using mutual information
    • Meyer PE, Lafitte F, Bontempi G. 2008. Minet: a R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformat. 9: 461.
    • (2008) BMC Bioinformat. , vol.9 , pp. 461
    • Meyer, P.E.1    Lafitte, F.2    Bontempi, G.3
  • 21
    • 0042235547 scopus 로고    scopus 로고
    • Heat shock proteins as regulators of the immune response
    • Pockley AG. 2003. Heat shock proteins as regulators of the immune response. Lancet 362: 469-476.
    • (2003) Lancet , vol.362 , pp. 469-476
    • Pockley, A.G.1
  • 23
    • 80053173508 scopus 로고    scopus 로고
    • Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction
    • Shi P, Ray S, Zhu Q, Kon MA. 2011. Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction. BMC Bioinformat. 12: 375.
    • (2011) BMC Bioinformat. , vol.12 , pp. 375
    • Shi, P.1    Ray, S.2    Zhu, Q.3    Kon, M.A.4
  • 24
    • 80655124719 scopus 로고    scopus 로고
    • TC-VGC: a tumor classification system using variations in genes' correlation
    • doi: 10.1016/j.cmpb.2011.03.002.
    • Shin E, Yoon Y, Ahn J, Park S. 2011. TC-VGC: a tumor classification system using variations in genes' correlation. Comput. Meth. Programs Biomed. 104: e87-101; doi: 10.1016/j.cmpb.2011.03.002.
    • (2011) Comput. Meth. Programs Biomed. , vol.104
    • Shin, E.1    Yoon, Y.2    Ahn, J.3    Park, S.4
  • 25
    • 0348136790 scopus 로고    scopus 로고
    • Supervised classification for gene network reconstruction
    • Soinov LA. 2003. Supervised classification for gene network reconstruction. Biochem. Soc. Trans. 31: 1497-1502.
    • (2003) Biochem. Soc. Trans. , vol.31 , pp. 1497-1502
    • Soinov, L.A.1
  • 26
    • 40949149421 scopus 로고    scopus 로고
    • Integration of clinical chemistry, expression, and metabolite data leads to better toxicological class separation
    • Spicker JS, Brunak S, Frederiksen KS, Toft H. 2008. Integration of clinical chemistry, expression, and metabolite data leads to better toxicological class separation. Toxicol. Sci. 102: 444-454.
    • (2008) Toxicol. Sci. , vol.102 , pp. 444-454
    • Spicker, J.S.1    Brunak, S.2    Frederiksen, K.S.3    Toft, H.4
  • 27
    • 0036512171 scopus 로고    scopus 로고
    • Roles of heat shock proteins in innate and adaptive immunity
    • Srivastava P. 2002. Roles of heat shock proteins in innate and adaptive immunity. Nat. Rev. Immunol. 2(3): 185-194.
    • (2002) Nat. Rev. Immunol. , vol.2 , Issue.3 , pp. 185-194
    • Srivastava, P.1
  • 29
    • 27544451127 scopus 로고    scopus 로고
    • Simple decision rules for classifying human cancers from gene expression profiles
    • Tan AC, Naiman DQ, Xu L, Winslow RL, Geman D. 2005. Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 21: 3896-3904.
    • (2005) Bioinformatics , vol.21 , pp. 3896-3904
    • Tan, A.C.1    Naiman, D.Q.2    Xu, L.3    Winslow, R.L.4    Geman, D.5
  • 30
    • 77957319820 scopus 로고    scopus 로고
    • DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules
    • Tesson BM, Breitling R, Jansen RC. 2010. DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules. BMC Bioinformat. 11: 497.
    • (2010) BMC Bioinformat. , vol.11 , pp. 497
    • Tesson, B.M.1    Breitling, R.2    Jansen, R.C.3
  • 31
    • 34347250516 scopus 로고    scopus 로고
    • Application of genomic biomarkers to predict increased lung tumor incidence in 2-year rodent cancer bioassays
    • Thomas RS, Pluta L, Yang L, Halsey TA. 2007. Application of genomic biomarkers to predict increased lung tumor incidence in 2-year rodent cancer bioassays. Toxicol. Sci. 97: 55-64.
    • (2007) Toxicol. Sci. , vol.97 , pp. 55-64
    • Thomas, R.S.1    Pluta, L.2    Yang, L.3    Halsey, T.A.4
  • 32
    • 74949106867 scopus 로고    scopus 로고
    • Use of short-term transcriptional profiles to assess the long term cancer-related safety of environmental and industrial chemicals
    • Thomas RS, Bao W, Chu T-M, Bessarabova M, Nikolskaya T, Nikolsky Y, Andersen ME, Wolfinger RD. 2009. Use of short-term transcriptional profiles to assess the long term cancer-related safety of environmental and industrial chemicals. Toxicol. Sci. 112(2): 311-321.
    • (2009) Toxicol. Sci. , vol.112 , Issue.2 , pp. 311-321
    • Thomas, R.S.1    Bao, W.2    Chu, T.-M.3    Bessarabova, M.4    Nikolskaya, T.5    Nikolsky, Y.6    Andersen, M.E.7    Wolfinger, R.D.8
  • 34
    • 34547649056 scopus 로고    scopus 로고
    • CoXpress: Differential co-expression in gene expression data
    • Watson M. 2006. CoXpress: Differential co-expression in gene expression data. BMC Bioinformat. 7: 20.
    • (2006) BMC Bioinformat. , vol.7 , pp. 20
    • Watson, M.1
  • 35
    • 23944458138 scopus 로고    scopus 로고
    • A general framework for weighted gene co-expression network analysis
    • article
    • Zhang B, Horvath S. 2005. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4(1): article 17.
    • (2005) Stat. Appl. Genet. Mol. Biol. , vol.4 , Issue.1 , pp. 17
    • Zhang, B.1    Horvath, S.2
  • 36
    • 60149089400 scopus 로고    scopus 로고
    • Differential dependency network analysis to identify condition-specific topological changes in biological networks
    • Zhang B, Li H, Riggins RB, Zhan M, Xuan J, Zhang Z, Hoffman EP, Clarke R, Wang Y. 2009. Differential dependency network analysis to identify condition-specific topological changes in biological networks. Bioinformatics 25: 526-532.
    • (2009) Bioinformatics , vol.25 , pp. 526-532
    • Zhang, B.1    Li, H.2    Riggins, R.B.3    Zhan, M.4    Xuan, J.5    Zhang, Z.6    Hoffman, E.P.7    Clarke, R.8    Wang, Y.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.