메뉴 건너뛰기




Volumn 23, Issue 6, 2013, Pages 1737-1751

Probabilistic neural network for breast cancer classification

Author keywords

Classification; Computer aided diagnosis (CAD); Probabilistic neural networks (PNN); Radial basis function (RBF); Repeating weighted boosting search (RWBS); Scaled conjugate gradient (SCG)

Indexed keywords

ARTIFICIAL INTELLIGENT TECHNIQUES; BOOSTING SEARCH; BREAST CANCER CLASSIFICATIONS; CLASSIFICATION ALGORITHM; COMPUTER-AIDED DIAGNOSIS SYSTEM; PROBABILISTIC NEURAL NETWORKS; RADIAL BASIS FUNCTION(RBF); SCALED CONJUGATE GRADIENTS;

EID: 84885904383     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-012-1134-8     Document Type: Article
Times cited : (105)

References (100)
  • 1
    • 0036275180 scopus 로고    scopus 로고
    • An evolutionary artificial neural networks approach for breast cancer diagnosis
    • Abbass HA (2002) An evolutionary artificial neural networks approach for breast cancer diagnosis. Artif Intell Med 25(3): 265-281.
    • (2002) Artif Intell Med , vol.25 , Issue.3 , pp. 265-281
    • Abbass, H.A.1
  • 2
    • 0031442386 scopus 로고    scopus 로고
    • Neural network analysis of breast cancer from MRI findings
    • Abdolmaleki P, Buadu LD, Murayama S et al (1997) Neural network analysis of breast cancer from MRI findings. Radiat Med 15(5): 283-293.
    • (1997) Radiat Med , vol.15 , Issue.5 , pp. 283-293
    • Abdolmaleki, P.1    Buadu, L.D.2    Murayama, S.3
  • 3
    • 0035841036 scopus 로고    scopus 로고
    • Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network
    • Abdolmaleki P, Buadu LD, Naderimansh H (2001) Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network. Cancer Lett 171(2): 183-191.
    • (2001) Cancer Lett , vol.171 , Issue.2 , pp. 183-191
    • Abdolmaleki, P.1    Buadu, L.D.2    Naderimansh, H.3
  • 4
    • 84855607187 scopus 로고    scopus 로고
    • American Cancer Society, Accessed on 14 April 2012
    • American Cancer Society (2010) Detailed guide: breast cancer. http://www. cancer. org/Cancer/BreastCancer/DetailedGuide/index. Accessed on 14 April 2012.
    • (2010) Detailed guide: Breast cancer
  • 6
    • 78650127410 scopus 로고    scopus 로고
    • Microcalcification detection in digital mammograms using novel filter bank
    • Balakumaran T, Vennila ILA, Gowri Shankar C (2010) Microcalcification detection in digital mammograms using novel filter bank. Procedia CS 2: 272-282.
    • (2010) Procedia CS , vol.2 , pp. 272-282
    • Balakumaran, T.1    Vennila, I.L.A.2    Gowri Shankar, C.3
  • 9
    • 0010515793 scopus 로고
    • A derivation of conjugate gradients
    • F. A. Lootsma (Ed.), London: Academic Press
    • Beale EML (1972) A derivation of conjugate gradients. In: Lootsma FA (ed) Numerical methods for nonlinear optimization. Academic Press, London.
    • (1972) Numerical Methods for Nonlinear Optimization
    • Beale, E.M.L.1
  • 13
  • 14
    • 0000583248 scopus 로고
    • Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
    • F. Fougelman-Soulie (Ed.), Berlin: Springer
    • Bridle JS (1989) Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In: Fougelman-Soulie F (ed) Neurocomputing: algorithms, architectures and applications. Springer, Berlin, pp 227-236.
    • (1989) Neurocomputing: Algorithms, Architectures and Applications , pp. 227-236
    • Bridle, J.S.1
  • 15
    • 0031047117 scopus 로고    scopus 로고
    • Artificial neural networks improve the accuracy of cancer survival prediction
    • Burke HB, Goodman PH, Rosen DB et al (1997) Artificial neural networks improve the accuracy of cancer survival prediction. Cancer 79(4): 857-862.
    • (1997) Cancer , vol.79 , Issue.4 , pp. 857-862
    • Burke, H.B.1    Goodman, P.H.2    Rosen, D.B.3
  • 18
    • 24644475780 scopus 로고    scopus 로고
    • Experiments with repeating weighted boosting search for optimization in signal processing applications
    • Chen S, Wang X, Harris CJ (2005) Experiments with repeating weighted boosting search for optimization in signal processing applications. IEEE Trans Syst Man Cybern B Cybern 35(4): 682-693.
    • (2005) IEEE Trans Syst Man Cybern B Cybern , vol.35 , Issue.4 , pp. 682-693
    • Chen, S.1    Wang, X.2    Harris, C.J.3
  • 19
    • 2342646229 scopus 로고    scopus 로고
    • Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines
    • Chou SM, Lee TS, Shao YE, Chen IF (2004) Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines. Expert Syst Appl 27(1): 133-142.
    • (2004) Expert Syst Appl , vol.27 , Issue.1 , pp. 133-142
    • Chou, S.M.1    Lee, T.S.2    Shao, Y.E.3    Chen, I.F.4
  • 21
    • 0028885032 scopus 로고
    • Introduction to neural networks
    • Cross SS, Harrison RF, Kennedy RL (1995) Introduction to neural networks. Lancet 346(8982): 1075-1079.
    • (1995) Lancet , vol.346 , Issue.8982 , pp. 1075-1079
    • Cross, S.S.1    Harrison, R.F.2    Kennedy, R.L.3
  • 22
    • 0142182081 scopus 로고    scopus 로고
    • Does ultrasound core breast biopsy predict histologic finding on excisional biopsy?
    • Crowe JP, Patrick RJ, Rybicki LA et al (2003) Does ultrasound core breast biopsy predict histologic finding on excisional biopsy? Am J Surg 186(4): 397-399.
    • (2003) Am J Surg , vol.186 , Issue.4 , pp. 397-399
    • Crowe, J.P.1    Patrick, R.J.2    Rybicki, L.A.3
  • 23
    • 0030104078 scopus 로고    scopus 로고
    • Neural networks in computational science and engineering
    • doi: 10. 1109/99. 486759
    • Cybenko G (1996) Neural networks in computational science and engineering. IEEE Comput Sci Eng 36-42. doi: 10. 1109/99. 486759.
    • (1996) IEEE Comput Sci Eng , pp. 36-42
    • Cybenko, G.1
  • 24
    • 0033375308 scopus 로고    scopus 로고
    • A prognostic model that makes quantitative estimates of probability of relapse for breast cancer patients
    • De Laurentiis M, De Placido S, Bianco AR et al (1999) A prognostic model that makes quantitative estimates of probability of relapse for breast cancer patients. Clin Cancer Res 5(12): 4133-4139.
    • (1999) Clin Cancer Res , vol.5 , Issue.12 , pp. 4133-4139
    • De Laurentiis, M.1    De Placido, S.2    Bianco, A.R.3
  • 25
    • 0033903664 scopus 로고    scopus 로고
    • Unsupervised stratification of cross-validation for accuracy estimation
    • Diamantidis NA, Karlis D, Giakoumakis EA (2000) Unsupervised stratification of cross-validation for accuracy estimation. Artif Intell 116: 1-16.
    • (2000) Artif Intell , vol.116 , pp. 1-16
    • Diamantidis, N.A.1    Karlis, D.2    Giakoumakis, E.A.3
  • 26
    • 0033180540 scopus 로고    scopus 로고
    • Computer-aided diagnosis in radiology: potential and pitfalls
    • Doi K, MacMahon H, Katsuragawa S et al (1999) Computer-aided diagnosis in radiology: potential and pitfalls. Eur J Radiol 31(2): 97-109.
    • (1999) Eur J Radiol , vol.31 , Issue.2 , pp. 97-109
    • Doi, K.1    MacMahon, H.2    Katsuragawa, S.3
  • 27
    • 34247171748 scopus 로고    scopus 로고
    • Computer-aided diagnosis in medical imaging: historical review, current status and future potential
    • Doi K (2007) Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 31(4-5): 198-211.
    • (2007) Comput Med Imaging Graph , vol.31 , Issue.4-5 , pp. 198-211
    • Doi, K.1
  • 30
    • 17144417034 scopus 로고    scopus 로고
    • Cairo, Egypt, National Cancer Institute, Massachusetts: Academic Press inc
    • Elatar I (2002) Cancer registration, NCI Egypt 2001. Cairo, Egypt, National Cancer Institute. http://www. nci. edu. eg/Journal/nci2001%20. pdf. Accessed 1 April 2004.
    • (2002) Cancer registration, NCI Egypt 2001
    • Elatar, I.1
  • 31
    • 0028005364 scopus 로고
    • Prediction of breast cancer malignancy using an artificial neural network
    • Floyd CE, Lo JY, Yun AJ et al (1994) Prediction of breast cancer malignancy using an artificial neural network. Cancer 74(11): 2944-2948.
    • (1994) Cancer , vol.74 , Issue.11 , pp. 2944-2948
    • Floyd, C.E.1    Lo, J.Y.2    Yun, A.J.3
  • 33
    • 18544399463 scopus 로고    scopus 로고
    • Evolving artificial neural networks for screening features from mammograms
    • Fogel DB, Wasson EC, Boughton EM, Porto VW (1998) Evolving artificial neural networks for screening features from mammograms. Artif Intell Med 14(3): 317-326.
    • (1998) Artif Intell Med , vol.14 , Issue.3 , pp. 317-326
    • Fogel, D.B.1    Wasson, E.C.2    Boughton, E.M.3    Porto, V.W.4
  • 34
    • 33847674996 scopus 로고    scopus 로고
    • Resampling methods for parameter-free and robust feature selection with mutual information
    • Francois D, Rossi F, Wertz V, Verleysen M (2007) Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 70: 1276-1288.
    • (2007) Neurocomputing , vol.70 , pp. 1276-1288
    • Francois, D.1    Rossi, F.2    Wertz, V.3    Verleysen, M.4
  • 35
    • 0000841115 scopus 로고    scopus 로고
    • Neural networks approach to early breast cancer detection
    • Furundzic D, Djordjevic M, Bekic AJ (1998) Neural networks approach to early breast cancer detection. J Syst Architect 44(8): 617-633.
    • (1998) J Syst Architect , vol.44 , Issue.8 , pp. 617-633
    • Furundzic, D.1    Djordjevic, M.2    Bekic, A.J.3
  • 38
    • 70349671353 scopus 로고    scopus 로고
    • Comparison of digital mammography and screen-film mammography in breast cancer screening: a review in the Irish breast screening program
    • Hambly NM, McNicholas MM, Phelan N et al (2009) Comparison of digital mammography and screen-film mammography in breast cancer screening: a review in the Irish breast screening program. AJR Am J Roentgenol 193(4): 1010-1018.
    • (2009) AJR Am J Roentgenol , vol.193 , Issue.4 , pp. 1010-1018
    • Hambly, N.M.1    McNicholas, M.M.2    Phelan, N.3
  • 39
    • 0004063090 scopus 로고    scopus 로고
    • 2nd edn. Prentice Hall, New Jersey. Health Canada, "Canadian Mammography Quality Guidelines," 2002
    • Haykin S (1999) Neural networks, 2nd edn. Prentice Hall, New Jersey. Health Canada, "Canadian Mammography Quality Guidelines," 2002.
    • (1999) Neural networks
    • Haykin, S.1
  • 41
    • 33645268110 scopus 로고    scopus 로고
    • Diagnostic application of serum protein pattern and artificial neural network software in breast cancer
    • Hu Y, Zhang SZ, Yu JK et al (2005) Diagnostic application of serum protein pattern and artificial neural network software in breast cancer. Ai Zheng 24(1): 67-71.
    • (2005) Ai Zheng , vol.24 , Issue.1 , pp. 67-71
    • Hu, Y.1    Zhang, S.Z.2    Yu, J.K.3
  • 42
    • 79955369556 scopus 로고    scopus 로고
    • An efficient automatic mass classification method in digitized mammograms using artificial neural network
    • Islam MJ, Ahmadi M, Sid-Ahmed MA (2010) An efficient automatic mass classification method in digitized mammograms using artificial neural network. Int J of Artif Intell Appl (IJAIA) 1(3): 1-13.
    • (2010) Int J of Artif Intell Appl (IJAIA) , vol.1 , Issue.3 , pp. 1-13
    • Islam, M.J.1    Ahmadi, M.2    Sid-Ahmed, M.A.3
  • 43
    • 60849106189 scopus 로고    scopus 로고
    • Receiver operating characteristic curve confidence intervals and regions
    • Kerekes J (2008) Receiver operating characteristic curve confidence intervals and regions. IEEE Geosci Remote Sens Lett 5(2): 251-255.
    • (2008) IEEE Geosci Remote Sens Lett , vol.5 , Issue.2 , pp. 251-255
    • Kerekes, J.1
  • 44
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks: a tutorial
    • Jain KA, Mao J, Mohiuddin KM (1996) Artificial neural networks: a tutorial. IEEE Comput 29(3): 31-44.
    • (1996) IEEE Comput , vol.29 , Issue.3 , pp. 31-44
    • Jain, K.A.1    Mao, J.2    Mohiuddin, K.M.3
  • 46
    • 1842856149 scopus 로고    scopus 로고
    • A combined neural network and decision trees model for prognosis of breast cancer relapse
    • Jerez-Aragonés JM, Gomez-Ruiz JA, Ramos-Jiménez G et al (2003) A combined neural network and decision trees model for prognosis of breast cancer relapse. Artif Intell Med 27(1): 45-63.
    • (2003) Artif Intell Med , vol.27 , Issue.1 , pp. 45-63
    • Jerez-Aragonés, J.M.1    Gomez-Ruiz, J.A.2    Ramos-Jiménez, G.3
  • 47
    • 0003612692 scopus 로고
    • Backpropagation learning for multi-layer feed-forward neural networks using the conjugate gradient method
    • Lawrence Livermore National Laboratory, Preprint UCRL-JC-104850
    • Johansson EM, Dowla FU, Goodman DM (1990) Backpropagation learning for multi-layer feed-forward neural networks using the conjugate gradient method, Lawrence Livermore National Laboratory, Preprint UCRL-JC-104850.
    • (1990)
    • Johansson, E.M.1    Dowla, F.U.2    Goodman, D.M.3
  • 48
    • 0003841602 scopus 로고
    • Why the logistic function? A tutorial discussion on probabilities and neural networks
    • New York: The McGraw-Hill Companies Inc
    • Jordan MI (1995) Why the logistic function? A tutorial discussion on probabilities and neural networks. MIT computational cognitive science report 9503. http://www. cs. berkeley. edu/*jordan.
    • (1995) MIT computational cognitive science report 9503
    • Jordan, M.I.1
  • 50
    • 34247124366 scopus 로고    scopus 로고
    • Breast cancer diagnosis using statistical neural networks
    • Kiyan T, Yildirim T (2004) Breast cancer diagnosis using statistical neural networks. J Electr Electron Eng 4(2): 1149-1153.
    • (2004) J Electr Electron Eng , vol.4 , Issue.2 , pp. 1149-1153
    • Kiyan, T.1    Yildirim, T.2
  • 51
    • 55349095801 scopus 로고    scopus 로고
    • Evaluation of computer-aided diagnosis on a large clinical full-field digital mammographic dataset
    • Li H, Giger ML, Yuan Y et al (2008) Evaluation of computer-aided diagnosis on a large clinical full-field digital mammographic dataset. Acad Radiol 15(11): 1437-1445.
    • (2008) Acad Radiol , vol.15 , Issue.11 , pp. 1437-1445
    • Li, H.1    Giger, M.L.2    Yuan, Y.3
  • 52
    • 0038162240 scopus 로고    scopus 로고
    • Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer
    • Lisboa PJ, Wong H, Harris P, Swindell RA (2003) Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer. Artif Intell Med 28(1): 1-25.
    • (2003) Artif Intell Med , vol.28 , Issue.1 , pp. 1-25
    • Lisboa, P.J.1    Wong, H.2    Harris, P.3    Swindell, R.A.4
  • 53
    • 77954248039 scopus 로고    scopus 로고
    • Altered metabolism in cancer
    • Locasale JW, Cantley LC (2010) Altered metabolism in cancer. BMC Biol 88: 88.
    • (2010) BMC Biol , vol.88 , pp. 88
    • Locasale, J.W.1    Cantley, L.C.2
  • 54
    • 0032730109 scopus 로고    scopus 로고
    • Artificial neural networks applied to survival prediction in breast cancer
    • Lundin M, Lundin J, Burke HB et al (1999) Artificial neural networks applied to survival prediction in breast cancer. Oncology 57(4): 281-286.
    • (1999) Oncology , vol.57 , Issue.4 , pp. 281-286
    • Lundin, M.1    Lundin, J.2    Burke, H.B.3
  • 56
    • 0002039637 scopus 로고
    • Cancer diagnosis via linear programming
    • Mangasarian OL, Wolberg WH (1990) Cancer diagnosis via linear programming. SIAM News 23(5): 1-18.
    • (1990) SIAM News , vol.23 , Issue.5 , pp. 1-18
    • Mangasarian, O.L.1    Wolberg, W.H.2
  • 57
    • 0003085879 scopus 로고
    • Pattern recognition via linear programming: theory and application to medical diagnosis
    • Thomas FColeman and YuyingLi (Eds.), Philadelphia: SIAM Publications
    • Mangasarian OL, Setiono R, Wolberg WH (1990) Pattern recognition via linear programming: theory and application to medical diagnosis. In: Coleman Thomas F, Li Yuying (eds) Large-scale numerical optimization. SIAM Publications, Philadelphia, pp 22-30.
    • (1990) Large-Scale Numerical Optimization , pp. 22-30
    • Mangasarian, O.L.1    Setiono, R.2    Wolberg, W.H.3
  • 58
    • 0032924219 scopus 로고    scopus 로고
    • Reasoning with uncertainty in pathology: artificial neural networks and logistic regression as tools for prediction of lymph node status in breast cancer patients
    • Marchevsky AM, Shah S, Patel S (1999) Reasoning with uncertainty in pathology: artificial neural networks and logistic regression as tools for prediction of lymph node status in breast cancer patients. Mod Pathol 12(5): 505-513.
    • (1999) Mod Pathol , vol.12 , Issue.5 , pp. 505-513
    • Marchevsky, A.M.1    Shah, S.2    Patel, S.3
  • 59
    • 8244219678 scopus 로고    scopus 로고
    • Prognostic factors for metachronous contralateral breast cancer: a comparison of the linear Cox regression model and its artificial neural network extension
    • Mariani L, Coradini D, Biganzoli E et al (1997) Prognostic factors for metachronous contralateral breast cancer: a comparison of the linear Cox regression model and its artificial neural network extension. Breast Cancer Res Treat 44(2): 167-178.
    • (1997) Breast Cancer Res Treat , vol.44 , Issue.2 , pp. 167-178
    • Mariani, L.1    Coradini, D.2    Biganzoli, E.3
  • 60
    • 10244235420 scopus 로고    scopus 로고
    • Prediction of the axillary lymph node status in mammary cancer on the basis of clinicopathological data and flow cytometry
    • Mattfeldt T, Kestler HA, Sinn HP (2004) Prediction of the axillary lymph node status in mammary cancer on the basis of clinicopathological data and flow cytometry. Med Biol Eng Comput 42(6): 733-739.
    • (2004) Med Biol Eng Comput , vol.42 , Issue.6 , pp. 733-739
    • Mattfeldt, T.1    Kestler, H.A.2    Sinn, H.P.3
  • 61
    • 77951208428 scopus 로고    scopus 로고
    • Breast cancer in women under 40 years of age: a series of 57 cases from Northern Ireland
    • McAree B, O'Donnell ME, Spence A et al (2010) Breast cancer in women under 40 years of age: a series of 57 cases from Northern Ireland. Breast 19(2): 97-104.
    • (2010) Breast , vol.19 , Issue.2 , pp. 97-104
    • McAree, B.1    O'Donnell, M.E.2    Spence, A.3
  • 62
    • 12444337492 scopus 로고    scopus 로고
    • A prototype methodology combining surface-enhanced laser desorption/ionization protein chip technology and artificial neural network algorithms to predict the chemoresponsiveness of breast cancer cell lines exposed to Paclitaxel and Doxorubicin under in vitro conditions
    • Mian S, Ball G, Hornbuckle J et al (2003) A prototype methodology combining surface-enhanced laser desorption/ionization protein chip technology and artificial neural network algorithms to predict the chemoresponsiveness of breast cancer cell lines exposed to Paclitaxel and Doxorubicin under in vitro conditions. Proteomics 3(9): 1725-1737.
    • (2003) Proteomics , vol.3 , Issue.9 , pp. 1725-1737
    • Mian, S.1    Ball, G.2    Hornbuckle, J.3
  • 63
    • 0004255908 scopus 로고    scopus 로고
    • New York: The McGraw-Hill Companies Inc
    • Mitchell T (1997) Machine learning. The McGraw-Hill Companies Inc., New York.
    • (1997) Machine Learning
    • Mitchell, T.1
  • 64
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6: 525-533.
    • (1993) Neural Netw , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 65
    • 0033084166 scopus 로고    scopus 로고
    • DNA ploidy and cell cycle distribution of breast cancer aspirate cells measured by image cytometry and analyzed by artificial neural networks for their prognostic significance
    • Naguib RN, Sakim HA, Lakshmi MS et al (1999) DNA ploidy and cell cycle distribution of breast cancer aspirate cells measured by image cytometry and analyzed by artificial neural networks for their prognostic significance. IEEE Trans Inf Technol Biomed 3(1): 61-69.
    • (1999) IEEE Trans Inf Technol Biomed , vol.3 , Issue.1 , pp. 61-69
    • Naguib, R.N.1    Sakim, H.A.2    Lakshmi, M.S.3
  • 66
    • 0030764424 scopus 로고    scopus 로고
    • Prediction of nodal metastasis and prognosis in breast cancer: a neural model
    • Naguib RN, Adams AE, Horne CH et al (1997) Prediction of nodal metastasis and prognosis in breast cancer: a neural model. Anticancer Res 17(4A): 2735-2741.
    • (1997) Anticancer Res , vol.17 , Issue.4 A , pp. 2735-2741
    • Naguib, R.N.1    Adams, A.E.2    Horne, C.H.3
  • 68
    • 17144402210 scopus 로고    scopus 로고
    • Breast cancer in Egypt: a review of disease presentation and detection strategies
    • Omar S, Khaled H, Gaafar R et al (2003) Breast cancer in Egypt: a review of disease presentation and detection strategies. East Mediterr Health J 9(3): 448-463.
    • (2003) East Mediterr Health J , vol.9 , Issue.3 , pp. 448-463
    • Omar, S.1    Khaled, H.2    Gaafar, R.3
  • 69
    • 82755190068 scopus 로고    scopus 로고
    • A Comparative study on breast cancer prediction using RBF and MLP
    • Padmavati J (2011) A Comparative study on breast cancer prediction using RBF and MLP. Int J Sci Eng Res 2(1): 1-5.
    • (2011) Int J Sci Eng Res , vol.2 , Issue.1 , pp. 1-5
    • Padmavati, J.1
  • 70
    • 2342446592 scopus 로고    scopus 로고
    • Receiver operating characteristic (ROC) curve: practical review for radiologists
    • Park SH, Goo JM, Jo CH (2004) Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean J Radiol 5(1): 11-18.
    • (2004) Korean J Radiol , vol.5 , Issue.1 , pp. 11-18
    • Park, S.H.1    Goo, J.M.2    Jo, C.H.3
  • 71
    • 0029840811 scopus 로고    scopus 로고
    • Neural networks in clinical medicine
    • Penny W, Frost D (1996) Neural networks in clinical medicine. Med Decis Mak 16(4): 386-398.
    • (1996) Med Decis Mak , vol.16 , Issue.4 , pp. 386-398
    • Penny, W.1    Frost, D.2
  • 72
    • 33846446220 scopus 로고
    • Restart procedures for the conjugate gradient method
    • Powell M (1977) Restart procedures for the conjugate gradient method. Math Program 12(1): 241-254.
    • (1977) Math Program , vol.12 , Issue.1 , pp. 241-254
    • Powell, M.1
  • 73
    • 84885919412 scopus 로고    scopus 로고
    • An extensive survey on artificial neural network based cancer prediction using SOFTCOMPUTING Approach
    • Pradhan M, Sahu RK (2011) An extensive survey on artificial neural network based cancer prediction using SOFTCOMPUTING Approach. Int J Comput Sci Emerg Technol IJCSET 2(4): 2044-6004.
    • (2011) Int J Comput Sci Emerg Technol IJCSET , vol.2 , Issue.4 , pp. 2044-6004
    • Pradhan, M.1    Sahu, R.K.2
  • 74
    • 84860320195 scopus 로고    scopus 로고
    • Parallel approach for diagnosis of breast cancer using neural network technique
    • Rani KU (2010) Parallel approach for diagnosis of breast cancer using neural network technique. Int J Comput Appl 10(3): 1-5.
    • (2010) Int J Comput Appl , vol.10 , Issue.3 , pp. 1-5
    • Rani, K.U.1
  • 75
    • 0027579011 scopus 로고
    • Neural computation in medicine
    • Reggia JA (1993) Neural computation in medicine. Artif Intell Med 5(2): 143-157.
    • (1993) Artif Intell Med , vol.5 , Issue.2 , pp. 143-157
    • Reggia, J.A.1
  • 77
    • 1442350707 scopus 로고    scopus 로고
    • Non-linear survival analysis using neural networks
    • Ripley RM, Harris AL, Tarassenko L (2004) Non-linear survival analysis using neural networks. Stat Med 23(5): 825-842.
    • (2004) Stat Med , vol.23 , Issue.5 , pp. 825-842
    • Ripley, R.M.1    Harris, A.L.2    Tarassenko, L.3
  • 78
    • 0035137729 scopus 로고    scopus 로고
    • Introduction to artificial neural networks for physicians: taking the lid off the black box
    • Rodvold DM, McLeod DG, Brandt JM et al (2001) Introduction to artificial neural networks for physicians: taking the lid off the black box. Prostate 46(1): 39-44.
    • (2001) Prostate , vol.46 , Issue.1 , pp. 39-44
    • Rodvold, D.M.1    McLeod, D.G.2    Brandt, J.M.3
  • 79
    • 0033052780 scopus 로고    scopus 로고
    • Use of artificial neural networks in modeling associations of discriminant factors: towards an intelligent selective breast cancer screening
    • Ronco AL (1999) Use of artificial neural networks in modeling associations of discriminant factors: towards an intelligent selective breast cancer screening. Artif Intell Med 16(3): 299-309.
    • (1999) Artif Intell Med , vol.16 , Issue.3 , pp. 299-309
    • Ronco, A.L.1
  • 81
    • 84885926165 scopus 로고    scopus 로고
    • Development of breast cancer diagnosis tool using hybrid magnetoacoustic method and artificial neural network
    • Salim MI, Ahmad AH, Ariffin I et al (2012) Development of breast cancer diagnosis tool using hybrid magnetoacoustic method and artificial neural network. Int J Biol Biomed Eng 6(1): 61-68.
    • (2012) Int J Biol Biomed Eng , vol.6 , Issue.1 , pp. 61-68
    • Salim, M.I.1    Ahmad, A.H.2    Ariffin, I.3
  • 84
    • 34047137002 scopus 로고    scopus 로고
    • American cancer society guidelines for breast screening with MRI as an adjunct to mammography
    • Saslow D, Boetes C, Burke W et al (2007) American cancer society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 57(2): 75-89.
    • (2007) CA Cancer J Clin , vol.57 , Issue.2 , pp. 75-89
    • Saslow, D.1    Boetes, C.2    Burke, W.3
  • 88
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht DF (1990) Probabilistic neural networks. Neural Netw 3: 109-118.
    • (1990) Neural Netw , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 91
    • 0035006815 scopus 로고    scopus 로고
    • A neural network approach to breast cancer diagnosis as a constraint satisfaction problem
    • Tourassi GD, Markey MK, Lo JY, Floyd CE (2001) A neural network approach to breast cancer diagnosis as a constraint satisfaction problem. Med Phys 28(5): 804-811.
    • (2001) Med Phys , vol.28 , Issue.5 , pp. 804-811
    • Tourassi, G.D.1    Markey, M.K.2    Lo, J.Y.3    Floyd, C.E.4
  • 92
    • 1642359158 scopus 로고    scopus 로고
    • Methodological approach to the use of artificial neural networks for predicting results in medicine
    • Trujillano J, March J, Sorribas A (2004) Methodological approach to the use of artificial neural networks for predicting results in medicine. Med Clin (Barc) 122(Suppl 1): 59-67.
    • (2004) Med Clin (Barc) , vol.122 , Issue.SUPPL. 1 , pp. 59-67
    • Trujillano, J.1    March, J.2    Sorribas, A.3
  • 94
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • Tu JV (1996) Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 49(11): 1225-1231.
    • (1996) J Clin Epidemiol , vol.49 , Issue.11 , pp. 1225-1231
    • Tu, J.V.1
  • 95
    • 34250666040 scopus 로고    scopus 로고
    • UCI,Accessed on 1 Aug 2012
    • UCI (2012) Machine learning repository. http://archive. ics. uci. edu/ml/index. html. Accessed on 1 Aug 2012.
    • (2012) Machine learning repository
  • 96
    • 43449139181 scopus 로고    scopus 로고
    • Systematic review: using magnetic resonance imaging to screen women at high risk for breast cancer
    • Warner E, Messersmith H, Causer P et al (2008) Systematic review: using magnetic resonance imaging to screen women at high risk for breast cancer. Ann Int Med 148(9): 671-679.
    • (2008) Ann Int Med , vol.148 , Issue.9 , pp. 671-679
    • Warner, E.1    Messersmith, H.2    Causer, P.3
  • 97
    • 58149143182 scopus 로고    scopus 로고
    • The role of magnetic resonance imaging in screening women at high risk of breast cancer
    • Warner E (2008) The role of magnetic resonance imaging in screening women at high risk of breast cancer. Top Magn Reson Imaging 19(3): 163-169.
    • (2008) Top Magn Reson Imaging , vol.19 , Issue.3 , pp. 163-169
    • Warner, E.1
  • 99
    • 84908049235 scopus 로고    scopus 로고
    • Diagnosis of breast tumours and evaluation of prognostic risk by using machine learning approaches
    • Yuan Q, Cai C, Xiao H et al (2007) Diagnosis of breast tumours and evaluation of prognostic risk by using machine learning approaches. Commun Comput Inf Sci 2: 1250-1260.
    • (2007) Commun Comput Inf Sci , vol.2 , pp. 1250-1260
    • Yuan, Q.1    Cai, C.2    Xiao, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.