-
1
-
-
0036275180
-
An evolutionary artificial neural networks approach for breast cancer diagnosis
-
Abbass HA (2002) An evolutionary artificial neural networks approach for breast cancer diagnosis. Artif Intell Med 25(3): 265-281.
-
(2002)
Artif Intell Med
, vol.25
, Issue.3
, pp. 265-281
-
-
Abbass, H.A.1
-
2
-
-
0031442386
-
Neural network analysis of breast cancer from MRI findings
-
Abdolmaleki P, Buadu LD, Murayama S et al (1997) Neural network analysis of breast cancer from MRI findings. Radiat Med 15(5): 283-293.
-
(1997)
Radiat Med
, vol.15
, Issue.5
, pp. 283-293
-
-
Abdolmaleki, P.1
Buadu, L.D.2
Murayama, S.3
-
3
-
-
0035841036
-
Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network
-
Abdolmaleki P, Buadu LD, Naderimansh H (2001) Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network. Cancer Lett 171(2): 183-191.
-
(2001)
Cancer Lett
, vol.171
, Issue.2
, pp. 183-191
-
-
Abdolmaleki, P.1
Buadu, L.D.2
Naderimansh, H.3
-
4
-
-
84855607187
-
-
American Cancer Society, Accessed on 14 April 2012
-
American Cancer Society (2010) Detailed guide: breast cancer. http://www. cancer. org/Cancer/BreastCancer/DetailedGuide/index. Accessed on 14 April 2012.
-
(2010)
Detailed guide: Breast cancer
-
-
-
6
-
-
78650127410
-
Microcalcification detection in digital mammograms using novel filter bank
-
Balakumaran T, Vennila ILA, Gowri Shankar C (2010) Microcalcification detection in digital mammograms using novel filter bank. Procedia CS 2: 272-282.
-
(2010)
Procedia CS
, vol.2
, pp. 272-282
-
-
Balakumaran, T.1
Vennila, I.L.A.2
Gowri Shankar, C.3
-
7
-
-
0000052978
-
-
INCC 90 Paris, international neural network conference, Natick: The MathWorks, Inc
-
Battiti R, Masulli F (1990), BFGS optimization for faster and automated supervised learning, INCC 90 Paris, international neural network conference, pp 757-760.
-
(1990)
BFGS optimization for faster and automated supervised learning
, pp. 757-760
-
-
Battiti, R.1
Masulli, F.2
-
9
-
-
0010515793
-
A derivation of conjugate gradients
-
F. A. Lootsma (Ed.), London: Academic Press
-
Beale EML (1972) A derivation of conjugate gradients. In: Lootsma FA (ed) Numerical methods for nonlinear optimization. Academic Press, London.
-
(1972)
Numerical Methods for Nonlinear Optimization
-
-
Beale, E.M.L.1
-
10
-
-
0041627900
-
Multiclass cancer classification using gene expression profiling and probabilistic neural networks
-
Lihue, Hawaii, USA, Jan 3-7
-
Berrar DP, Downes CS, Dubitzky W (2003) Multiclass cancer classification using gene expression profiling and probabilistic neural networks. In: Proceedings of the 8th pacific symposium on biocomputing (PSB 2003), Lihue, Hawaii, USA, Jan 3-7, pp 5-16.
-
(2003)
Proceedings of the 8th pacific symposium on biocomputing (PSB 2003)
, pp. 5-16
-
-
Berrar, D.P.1
Downes, C.S.2
Dubitzky, W.3
-
14
-
-
0000583248
-
Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
-
F. Fougelman-Soulie (Ed.), Berlin: Springer
-
Bridle JS (1989) Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In: Fougelman-Soulie F (ed) Neurocomputing: algorithms, architectures and applications. Springer, Berlin, pp 227-236.
-
(1989)
Neurocomputing: Algorithms, Architectures and Applications
, pp. 227-236
-
-
Bridle, J.S.1
-
15
-
-
0031047117
-
Artificial neural networks improve the accuracy of cancer survival prediction
-
Burke HB, Goodman PH, Rosen DB et al (1997) Artificial neural networks improve the accuracy of cancer survival prediction. Cancer 79(4): 857-862.
-
(1997)
Cancer
, vol.79
, Issue.4
, pp. 857-862
-
-
Burke, H.B.1
Goodman, P.H.2
Rosen, D.B.3
-
18
-
-
24644475780
-
Experiments with repeating weighted boosting search for optimization in signal processing applications
-
Chen S, Wang X, Harris CJ (2005) Experiments with repeating weighted boosting search for optimization in signal processing applications. IEEE Trans Syst Man Cybern B Cybern 35(4): 682-693.
-
(2005)
IEEE Trans Syst Man Cybern B Cybern
, vol.35
, Issue.4
, pp. 682-693
-
-
Chen, S.1
Wang, X.2
Harris, C.J.3
-
19
-
-
2342646229
-
Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines
-
Chou SM, Lee TS, Shao YE, Chen IF (2004) Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines. Expert Syst Appl 27(1): 133-142.
-
(2004)
Expert Syst Appl
, vol.27
, Issue.1
, pp. 133-142
-
-
Chou, S.M.1
Lee, T.S.2
Shao, Y.E.3
Chen, I.F.4
-
20
-
-
0036768026
-
Computer aided diagnosis of breast cancer in digitized mammograms
-
Christoyianni I, Koutras A, Dermatas E, Kokkinakis G (2002) Computer aided diagnosis of breast cancer in digitized mammograms. Comput Med Imaging Graph 26(5): 309-319.
-
(2002)
Comput Med Imaging Graph
, vol.26
, Issue.5
, pp. 309-319
-
-
Christoyianni, I.1
Koutras, A.2
Dermatas, E.3
Kokkinakis, G.4
-
21
-
-
0028885032
-
Introduction to neural networks
-
Cross SS, Harrison RF, Kennedy RL (1995) Introduction to neural networks. Lancet 346(8982): 1075-1079.
-
(1995)
Lancet
, vol.346
, Issue.8982
, pp. 1075-1079
-
-
Cross, S.S.1
Harrison, R.F.2
Kennedy, R.L.3
-
22
-
-
0142182081
-
Does ultrasound core breast biopsy predict histologic finding on excisional biopsy?
-
Crowe JP, Patrick RJ, Rybicki LA et al (2003) Does ultrasound core breast biopsy predict histologic finding on excisional biopsy? Am J Surg 186(4): 397-399.
-
(2003)
Am J Surg
, vol.186
, Issue.4
, pp. 397-399
-
-
Crowe, J.P.1
Patrick, R.J.2
Rybicki, L.A.3
-
23
-
-
0030104078
-
Neural networks in computational science and engineering
-
doi: 10. 1109/99. 486759
-
Cybenko G (1996) Neural networks in computational science and engineering. IEEE Comput Sci Eng 36-42. doi: 10. 1109/99. 486759.
-
(1996)
IEEE Comput Sci Eng
, pp. 36-42
-
-
Cybenko, G.1
-
24
-
-
0033375308
-
A prognostic model that makes quantitative estimates of probability of relapse for breast cancer patients
-
De Laurentiis M, De Placido S, Bianco AR et al (1999) A prognostic model that makes quantitative estimates of probability of relapse for breast cancer patients. Clin Cancer Res 5(12): 4133-4139.
-
(1999)
Clin Cancer Res
, vol.5
, Issue.12
, pp. 4133-4139
-
-
De Laurentiis, M.1
De Placido, S.2
Bianco, A.R.3
-
25
-
-
0033903664
-
Unsupervised stratification of cross-validation for accuracy estimation
-
Diamantidis NA, Karlis D, Giakoumakis EA (2000) Unsupervised stratification of cross-validation for accuracy estimation. Artif Intell 116: 1-16.
-
(2000)
Artif Intell
, vol.116
, pp. 1-16
-
-
Diamantidis, N.A.1
Karlis, D.2
Giakoumakis, E.A.3
-
26
-
-
0033180540
-
Computer-aided diagnosis in radiology: potential and pitfalls
-
Doi K, MacMahon H, Katsuragawa S et al (1999) Computer-aided diagnosis in radiology: potential and pitfalls. Eur J Radiol 31(2): 97-109.
-
(1999)
Eur J Radiol
, vol.31
, Issue.2
, pp. 97-109
-
-
Doi, K.1
MacMahon, H.2
Katsuragawa, S.3
-
27
-
-
34247171748
-
Computer-aided diagnosis in medical imaging: historical review, current status and future potential
-
Doi K (2007) Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 31(4-5): 198-211.
-
(2007)
Comput Med Imaging Graph
, vol.31
, Issue.4-5
, pp. 198-211
-
-
Doi, K.1
-
30
-
-
17144417034
-
-
Cairo, Egypt, National Cancer Institute, Massachusetts: Academic Press inc
-
Elatar I (2002) Cancer registration, NCI Egypt 2001. Cairo, Egypt, National Cancer Institute. http://www. nci. edu. eg/Journal/nci2001%20. pdf. Accessed 1 April 2004.
-
(2002)
Cancer registration, NCI Egypt 2001
-
-
Elatar, I.1
-
31
-
-
0028005364
-
Prediction of breast cancer malignancy using an artificial neural network
-
Floyd CE, Lo JY, Yun AJ et al (1994) Prediction of breast cancer malignancy using an artificial neural network. Cancer 74(11): 2944-2948.
-
(1994)
Cancer
, vol.74
, Issue.11
, pp. 2944-2948
-
-
Floyd, C.E.1
Lo, J.Y.2
Yun, A.J.3
-
33
-
-
18544399463
-
Evolving artificial neural networks for screening features from mammograms
-
Fogel DB, Wasson EC, Boughton EM, Porto VW (1998) Evolving artificial neural networks for screening features from mammograms. Artif Intell Med 14(3): 317-326.
-
(1998)
Artif Intell Med
, vol.14
, Issue.3
, pp. 317-326
-
-
Fogel, D.B.1
Wasson, E.C.2
Boughton, E.M.3
Porto, V.W.4
-
34
-
-
33847674996
-
Resampling methods for parameter-free and robust feature selection with mutual information
-
Francois D, Rossi F, Wertz V, Verleysen M (2007) Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 70: 1276-1288.
-
(2007)
Neurocomputing
, vol.70
, pp. 1276-1288
-
-
Francois, D.1
Rossi, F.2
Wertz, V.3
Verleysen, M.4
-
35
-
-
0000841115
-
Neural networks approach to early breast cancer detection
-
Furundzic D, Djordjevic M, Bekic AJ (1998) Neural networks approach to early breast cancer detection. J Syst Architect 44(8): 617-633.
-
(1998)
J Syst Architect
, vol.44
, Issue.8
, pp. 617-633
-
-
Furundzic, D.1
Djordjevic, M.2
Bekic, A.J.3
-
38
-
-
70349671353
-
Comparison of digital mammography and screen-film mammography in breast cancer screening: a review in the Irish breast screening program
-
Hambly NM, McNicholas MM, Phelan N et al (2009) Comparison of digital mammography and screen-film mammography in breast cancer screening: a review in the Irish breast screening program. AJR Am J Roentgenol 193(4): 1010-1018.
-
(2009)
AJR Am J Roentgenol
, vol.193
, Issue.4
, pp. 1010-1018
-
-
Hambly, N.M.1
McNicholas, M.M.2
Phelan, N.3
-
39
-
-
0004063090
-
-
2nd edn. Prentice Hall, New Jersey. Health Canada, "Canadian Mammography Quality Guidelines," 2002
-
Haykin S (1999) Neural networks, 2nd edn. Prentice Hall, New Jersey. Health Canada, "Canadian Mammography Quality Guidelines," 2002.
-
(1999)
Neural networks
-
-
Haykin, S.1
-
41
-
-
33645268110
-
Diagnostic application of serum protein pattern and artificial neural network software in breast cancer
-
Hu Y, Zhang SZ, Yu JK et al (2005) Diagnostic application of serum protein pattern and artificial neural network software in breast cancer. Ai Zheng 24(1): 67-71.
-
(2005)
Ai Zheng
, vol.24
, Issue.1
, pp. 67-71
-
-
Hu, Y.1
Zhang, S.Z.2
Yu, J.K.3
-
42
-
-
79955369556
-
An efficient automatic mass classification method in digitized mammograms using artificial neural network
-
Islam MJ, Ahmadi M, Sid-Ahmed MA (2010) An efficient automatic mass classification method in digitized mammograms using artificial neural network. Int J of Artif Intell Appl (IJAIA) 1(3): 1-13.
-
(2010)
Int J of Artif Intell Appl (IJAIA)
, vol.1
, Issue.3
, pp. 1-13
-
-
Islam, M.J.1
Ahmadi, M.2
Sid-Ahmed, M.A.3
-
43
-
-
60849106189
-
Receiver operating characteristic curve confidence intervals and regions
-
Kerekes J (2008) Receiver operating characteristic curve confidence intervals and regions. IEEE Geosci Remote Sens Lett 5(2): 251-255.
-
(2008)
IEEE Geosci Remote Sens Lett
, vol.5
, Issue.2
, pp. 251-255
-
-
Kerekes, J.1
-
44
-
-
0030104449
-
Artificial neural networks: a tutorial
-
Jain KA, Mao J, Mohiuddin KM (1996) Artificial neural networks: a tutorial. IEEE Comput 29(3): 31-44.
-
(1996)
IEEE Comput
, vol.29
, Issue.3
, pp. 31-44
-
-
Jain, K.A.1
Mao, J.2
Mohiuddin, K.M.3
-
45
-
-
77957560957
-
Breast cancer diagnosis using artificial neural network models
-
Chengdu, China, June 23-25
-
Janghel RR, Shukla A, Tiwari R, Kala R (2010) Breast cancer diagnosis using artificial neural network models. In: Proceedings of the 3rd IEEE international conference on information sciences and interaction sciences, Chengdu, China, June 23-25, pp 89-94.
-
(2010)
Proceedings of the 3rd IEEE international conference on information sciences and interaction sciences
, pp. 89-94
-
-
Janghel, R.R.1
Shukla, A.2
Tiwari, R.3
Kala, R.4
-
46
-
-
1842856149
-
A combined neural network and decision trees model for prognosis of breast cancer relapse
-
Jerez-Aragonés JM, Gomez-Ruiz JA, Ramos-Jiménez G et al (2003) A combined neural network and decision trees model for prognosis of breast cancer relapse. Artif Intell Med 27(1): 45-63.
-
(2003)
Artif Intell Med
, vol.27
, Issue.1
, pp. 45-63
-
-
Jerez-Aragonés, J.M.1
Gomez-Ruiz, J.A.2
Ramos-Jiménez, G.3
-
47
-
-
0003612692
-
Backpropagation learning for multi-layer feed-forward neural networks using the conjugate gradient method
-
Lawrence Livermore National Laboratory, Preprint UCRL-JC-104850
-
Johansson EM, Dowla FU, Goodman DM (1990) Backpropagation learning for multi-layer feed-forward neural networks using the conjugate gradient method, Lawrence Livermore National Laboratory, Preprint UCRL-JC-104850.
-
(1990)
-
-
Johansson, E.M.1
Dowla, F.U.2
Goodman, D.M.3
-
48
-
-
0003841602
-
Why the logistic function? A tutorial discussion on probabilities and neural networks
-
New York: The McGraw-Hill Companies Inc
-
Jordan MI (1995) Why the logistic function? A tutorial discussion on probabilities and neural networks. MIT computational cognitive science report 9503. http://www. cs. berkeley. edu/*jordan.
-
(1995)
MIT computational cognitive science report 9503
-
-
Jordan, M.I.1
-
49
-
-
80054846752
-
Diagnosis of breast cancer by modular evolutionary neural networks
-
Kala R, Janghel RR, Tiwari R, Shukla A (2011) Diagnosis of breast cancer by modular evolutionary neural networks. Int J Biomed Eng Technol (IJBET) 7(2): 194-211.
-
(2011)
Int J Biomed Eng Technol (IJBET)
, vol.7
, Issue.2
, pp. 194-211
-
-
Kala, R.1
Janghel, R.R.2
Tiwari, R.3
Shukla, A.4
-
50
-
-
34247124366
-
Breast cancer diagnosis using statistical neural networks
-
Kiyan T, Yildirim T (2004) Breast cancer diagnosis using statistical neural networks. J Electr Electron Eng 4(2): 1149-1153.
-
(2004)
J Electr Electron Eng
, vol.4
, Issue.2
, pp. 1149-1153
-
-
Kiyan, T.1
Yildirim, T.2
-
51
-
-
55349095801
-
Evaluation of computer-aided diagnosis on a large clinical full-field digital mammographic dataset
-
Li H, Giger ML, Yuan Y et al (2008) Evaluation of computer-aided diagnosis on a large clinical full-field digital mammographic dataset. Acad Radiol 15(11): 1437-1445.
-
(2008)
Acad Radiol
, vol.15
, Issue.11
, pp. 1437-1445
-
-
Li, H.1
Giger, M.L.2
Yuan, Y.3
-
52
-
-
0038162240
-
Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer
-
Lisboa PJ, Wong H, Harris P, Swindell RA (2003) Bayesian neural network approach for modelling censored data with an application to prognosis after surgery for breast cancer. Artif Intell Med 28(1): 1-25.
-
(2003)
Artif Intell Med
, vol.28
, Issue.1
, pp. 1-25
-
-
Lisboa, P.J.1
Wong, H.2
Harris, P.3
Swindell, R.A.4
-
54
-
-
0032730109
-
Artificial neural networks applied to survival prediction in breast cancer
-
Lundin M, Lundin J, Burke HB et al (1999) Artificial neural networks applied to survival prediction in breast cancer. Oncology 57(4): 281-286.
-
(1999)
Oncology
, vol.57
, Issue.4
, pp. 281-286
-
-
Lundin, M.1
Lundin, J.2
Burke, H.B.3
-
56
-
-
0002039637
-
Cancer diagnosis via linear programming
-
Mangasarian OL, Wolberg WH (1990) Cancer diagnosis via linear programming. SIAM News 23(5): 1-18.
-
(1990)
SIAM News
, vol.23
, Issue.5
, pp. 1-18
-
-
Mangasarian, O.L.1
Wolberg, W.H.2
-
57
-
-
0003085879
-
Pattern recognition via linear programming: theory and application to medical diagnosis
-
Thomas FColeman and YuyingLi (Eds.), Philadelphia: SIAM Publications
-
Mangasarian OL, Setiono R, Wolberg WH (1990) Pattern recognition via linear programming: theory and application to medical diagnosis. In: Coleman Thomas F, Li Yuying (eds) Large-scale numerical optimization. SIAM Publications, Philadelphia, pp 22-30.
-
(1990)
Large-Scale Numerical Optimization
, pp. 22-30
-
-
Mangasarian, O.L.1
Setiono, R.2
Wolberg, W.H.3
-
58
-
-
0032924219
-
Reasoning with uncertainty in pathology: artificial neural networks and logistic regression as tools for prediction of lymph node status in breast cancer patients
-
Marchevsky AM, Shah S, Patel S (1999) Reasoning with uncertainty in pathology: artificial neural networks and logistic regression as tools for prediction of lymph node status in breast cancer patients. Mod Pathol 12(5): 505-513.
-
(1999)
Mod Pathol
, vol.12
, Issue.5
, pp. 505-513
-
-
Marchevsky, A.M.1
Shah, S.2
Patel, S.3
-
59
-
-
8244219678
-
Prognostic factors for metachronous contralateral breast cancer: a comparison of the linear Cox regression model and its artificial neural network extension
-
Mariani L, Coradini D, Biganzoli E et al (1997) Prognostic factors for metachronous contralateral breast cancer: a comparison of the linear Cox regression model and its artificial neural network extension. Breast Cancer Res Treat 44(2): 167-178.
-
(1997)
Breast Cancer Res Treat
, vol.44
, Issue.2
, pp. 167-178
-
-
Mariani, L.1
Coradini, D.2
Biganzoli, E.3
-
60
-
-
10244235420
-
Prediction of the axillary lymph node status in mammary cancer on the basis of clinicopathological data and flow cytometry
-
Mattfeldt T, Kestler HA, Sinn HP (2004) Prediction of the axillary lymph node status in mammary cancer on the basis of clinicopathological data and flow cytometry. Med Biol Eng Comput 42(6): 733-739.
-
(2004)
Med Biol Eng Comput
, vol.42
, Issue.6
, pp. 733-739
-
-
Mattfeldt, T.1
Kestler, H.A.2
Sinn, H.P.3
-
61
-
-
77951208428
-
Breast cancer in women under 40 years of age: a series of 57 cases from Northern Ireland
-
McAree B, O'Donnell ME, Spence A et al (2010) Breast cancer in women under 40 years of age: a series of 57 cases from Northern Ireland. Breast 19(2): 97-104.
-
(2010)
Breast
, vol.19
, Issue.2
, pp. 97-104
-
-
McAree, B.1
O'Donnell, M.E.2
Spence, A.3
-
62
-
-
12444337492
-
A prototype methodology combining surface-enhanced laser desorption/ionization protein chip technology and artificial neural network algorithms to predict the chemoresponsiveness of breast cancer cell lines exposed to Paclitaxel and Doxorubicin under in vitro conditions
-
Mian S, Ball G, Hornbuckle J et al (2003) A prototype methodology combining surface-enhanced laser desorption/ionization protein chip technology and artificial neural network algorithms to predict the chemoresponsiveness of breast cancer cell lines exposed to Paclitaxel and Doxorubicin under in vitro conditions. Proteomics 3(9): 1725-1737.
-
(2003)
Proteomics
, vol.3
, Issue.9
, pp. 1725-1737
-
-
Mian, S.1
Ball, G.2
Hornbuckle, J.3
-
63
-
-
0004255908
-
-
New York: The McGraw-Hill Companies Inc
-
Mitchell T (1997) Machine learning. The McGraw-Hill Companies Inc., New York.
-
(1997)
Machine Learning
-
-
Mitchell, T.1
-
64
-
-
0027205884
-
A scaled conjugate gradient algorithm for fast supervised learning
-
Moller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6: 525-533.
-
(1993)
Neural Netw
, vol.6
, pp. 525-533
-
-
Moller, M.F.1
-
65
-
-
0033084166
-
DNA ploidy and cell cycle distribution of breast cancer aspirate cells measured by image cytometry and analyzed by artificial neural networks for their prognostic significance
-
Naguib RN, Sakim HA, Lakshmi MS et al (1999) DNA ploidy and cell cycle distribution of breast cancer aspirate cells measured by image cytometry and analyzed by artificial neural networks for their prognostic significance. IEEE Trans Inf Technol Biomed 3(1): 61-69.
-
(1999)
IEEE Trans Inf Technol Biomed
, vol.3
, Issue.1
, pp. 61-69
-
-
Naguib, R.N.1
Sakim, H.A.2
Lakshmi, M.S.3
-
66
-
-
0030764424
-
Prediction of nodal metastasis and prognosis in breast cancer: a neural model
-
Naguib RN, Adams AE, Horne CH et al (1997) Prediction of nodal metastasis and prognosis in breast cancer: a neural model. Anticancer Res 17(4A): 2735-2741.
-
(1997)
Anticancer Res
, vol.17
, Issue.4 A
, pp. 2735-2741
-
-
Naguib, R.N.1
Adams, A.E.2
Horne, C.H.3
-
68
-
-
17144402210
-
Breast cancer in Egypt: a review of disease presentation and detection strategies
-
Omar S, Khaled H, Gaafar R et al (2003) Breast cancer in Egypt: a review of disease presentation and detection strategies. East Mediterr Health J 9(3): 448-463.
-
(2003)
East Mediterr Health J
, vol.9
, Issue.3
, pp. 448-463
-
-
Omar, S.1
Khaled, H.2
Gaafar, R.3
-
69
-
-
82755190068
-
A Comparative study on breast cancer prediction using RBF and MLP
-
Padmavati J (2011) A Comparative study on breast cancer prediction using RBF and MLP. Int J Sci Eng Res 2(1): 1-5.
-
(2011)
Int J Sci Eng Res
, vol.2
, Issue.1
, pp. 1-5
-
-
Padmavati, J.1
-
70
-
-
2342446592
-
Receiver operating characteristic (ROC) curve: practical review for radiologists
-
Park SH, Goo JM, Jo CH (2004) Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean J Radiol 5(1): 11-18.
-
(2004)
Korean J Radiol
, vol.5
, Issue.1
, pp. 11-18
-
-
Park, S.H.1
Goo, J.M.2
Jo, C.H.3
-
71
-
-
0029840811
-
Neural networks in clinical medicine
-
Penny W, Frost D (1996) Neural networks in clinical medicine. Med Decis Mak 16(4): 386-398.
-
(1996)
Med Decis Mak
, vol.16
, Issue.4
, pp. 386-398
-
-
Penny, W.1
Frost, D.2
-
72
-
-
33846446220
-
Restart procedures for the conjugate gradient method
-
Powell M (1977) Restart procedures for the conjugate gradient method. Math Program 12(1): 241-254.
-
(1977)
Math Program
, vol.12
, Issue.1
, pp. 241-254
-
-
Powell, M.1
-
73
-
-
84885919412
-
An extensive survey on artificial neural network based cancer prediction using SOFTCOMPUTING Approach
-
Pradhan M, Sahu RK (2011) An extensive survey on artificial neural network based cancer prediction using SOFTCOMPUTING Approach. Int J Comput Sci Emerg Technol IJCSET 2(4): 2044-6004.
-
(2011)
Int J Comput Sci Emerg Technol IJCSET
, vol.2
, Issue.4
, pp. 2044-6004
-
-
Pradhan, M.1
Sahu, R.K.2
-
74
-
-
84860320195
-
Parallel approach for diagnosis of breast cancer using neural network technique
-
Rani KU (2010) Parallel approach for diagnosis of breast cancer using neural network technique. Int J Comput Appl 10(3): 1-5.
-
(2010)
Int J Comput Appl
, vol.10
, Issue.3
, pp. 1-5
-
-
Rani, K.U.1
-
75
-
-
0027579011
-
Neural computation in medicine
-
Reggia JA (1993) Neural computation in medicine. Artif Intell Med 5(2): 143-157.
-
(1993)
Artif Intell Med
, vol.5
, Issue.2
, pp. 143-157
-
-
Reggia, J.A.1
-
77
-
-
1442350707
-
Non-linear survival analysis using neural networks
-
Ripley RM, Harris AL, Tarassenko L (2004) Non-linear survival analysis using neural networks. Stat Med 23(5): 825-842.
-
(2004)
Stat Med
, vol.23
, Issue.5
, pp. 825-842
-
-
Ripley, R.M.1
Harris, A.L.2
Tarassenko, L.3
-
78
-
-
0035137729
-
Introduction to artificial neural networks for physicians: taking the lid off the black box
-
Rodvold DM, McLeod DG, Brandt JM et al (2001) Introduction to artificial neural networks for physicians: taking the lid off the black box. Prostate 46(1): 39-44.
-
(2001)
Prostate
, vol.46
, Issue.1
, pp. 39-44
-
-
Rodvold, D.M.1
McLeod, D.G.2
Brandt, J.M.3
-
79
-
-
0033052780
-
Use of artificial neural networks in modeling associations of discriminant factors: towards an intelligent selective breast cancer screening
-
Ronco AL (1999) Use of artificial neural networks in modeling associations of discriminant factors: towards an intelligent selective breast cancer screening. Artif Intell Med 16(3): 299-309.
-
(1999)
Artif Intell Med
, vol.16
, Issue.3
, pp. 299-309
-
-
Ronco, A.L.1
-
81
-
-
84885926165
-
Development of breast cancer diagnosis tool using hybrid magnetoacoustic method and artificial neural network
-
Salim MI, Ahmad AH, Ariffin I et al (2012) Development of breast cancer diagnosis tool using hybrid magnetoacoustic method and artificial neural network. Int J Biol Biomed Eng 6(1): 61-68.
-
(2012)
Int J Biol Biomed Eng
, vol.6
, Issue.1
, pp. 61-68
-
-
Salim, M.I.1
Ahmad, A.H.2
Ariffin, I.3
-
83
-
-
78650026617
-
Predicting breast cancer survivability using data mining techniques
-
2nd international conference
-
Sarvestan SA, Safavi AA, Parandeh MN, Salehi M (2010) Predicting breast cancer survivability using data mining techniques. software technology and engineering (ICSTE), 2nd international conference, vol 2, pp 227-231.
-
(2010)
Software technology and engineering (ICSTE)
, vol.2
, pp. 227-231
-
-
Sarvestan, S.A.1
Safavi, A.A.2
Parandeh, M.N.3
Salehi, M.4
-
84
-
-
34047137002
-
American cancer society guidelines for breast screening with MRI as an adjunct to mammography
-
Saslow D, Boetes C, Burke W et al (2007) American cancer society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 57(2): 75-89.
-
(2007)
CA Cancer J Clin
, vol.57
, Issue.2
, pp. 75-89
-
-
Saslow, D.1
Boetes, C.2
Burke, W.3
-
85
-
-
77950870593
-
Neural network aided breast cancer detection and diagnosis
-
Cavtat, Croatia, June 12-14
-
Sawarkar SD, Ghatol AA, Pande AP (2006) Neural network aided breast cancer detection and diagnosis. In: Proceedings of the 7th WSEAS international conference on neural networks, Cavtat, Croatia, June 12-14, pp 158-163.
-
(2006)
Proceedings of the 7th WSEAS international conference on neural networks
, pp. 158-163
-
-
Sawarkar, S.D.1
Ghatol, A.A.2
Pande, A.P.3
-
86
-
-
33846307456
-
A review of breast ultrasound
-
Sehgal CM, Weinstein SP, Arger PH, Conant EF (2006) A review of breast ultrasound. J Mammary Gland Biol Neoplasia 11(2): 113-123.
-
(2006)
J Mammary Gland Biol Neoplasia
, vol.11
, Issue.2
, pp. 113-123
-
-
Sehgal, C.M.1
Weinstein, S.P.2
Arger, P.H.3
Conant, E.F.4
-
88
-
-
0025206332
-
Probabilistic neural networks
-
Specht DF (1990) Probabilistic neural networks. Neural Netw 3: 109-118.
-
(1990)
Neural Netw
, vol.3
, pp. 109-118
-
-
Specht, D.F.1
-
91
-
-
0035006815
-
A neural network approach to breast cancer diagnosis as a constraint satisfaction problem
-
Tourassi GD, Markey MK, Lo JY, Floyd CE (2001) A neural network approach to breast cancer diagnosis as a constraint satisfaction problem. Med Phys 28(5): 804-811.
-
(2001)
Med Phys
, vol.28
, Issue.5
, pp. 804-811
-
-
Tourassi, G.D.1
Markey, M.K.2
Lo, J.Y.3
Floyd, C.E.4
-
92
-
-
1642359158
-
Methodological approach to the use of artificial neural networks for predicting results in medicine
-
Trujillano J, March J, Sorribas A (2004) Methodological approach to the use of artificial neural networks for predicting results in medicine. Med Clin (Barc) 122(Suppl 1): 59-67.
-
(2004)
Med Clin (Barc)
, vol.122
, Issue.SUPPL. 1
, pp. 59-67
-
-
Trujillano, J.1
March, J.2
Sorribas, A.3
-
94
-
-
0030297904
-
Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
-
Tu JV (1996) Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 49(11): 1225-1231.
-
(1996)
J Clin Epidemiol
, vol.49
, Issue.11
, pp. 1225-1231
-
-
Tu, J.V.1
-
95
-
-
34250666040
-
-
UCI,Accessed on 1 Aug 2012
-
UCI (2012) Machine learning repository. http://archive. ics. uci. edu/ml/index. html. Accessed on 1 Aug 2012.
-
(2012)
Machine learning repository
-
-
-
96
-
-
43449139181
-
Systematic review: using magnetic resonance imaging to screen women at high risk for breast cancer
-
Warner E, Messersmith H, Causer P et al (2008) Systematic review: using magnetic resonance imaging to screen women at high risk for breast cancer. Ann Int Med 148(9): 671-679.
-
(2008)
Ann Int Med
, vol.148
, Issue.9
, pp. 671-679
-
-
Warner, E.1
Messersmith, H.2
Causer, P.3
-
97
-
-
58149143182
-
The role of magnetic resonance imaging in screening women at high risk of breast cancer
-
Warner E (2008) The role of magnetic resonance imaging in screening women at high risk of breast cancer. Top Magn Reson Imaging 19(3): 163-169.
-
(2008)
Top Magn Reson Imaging
, vol.19
, Issue.3
, pp. 163-169
-
-
Warner, E.1
-
99
-
-
84908049235
-
Diagnosis of breast tumours and evaluation of prognostic risk by using machine learning approaches
-
Yuan Q, Cai C, Xiao H et al (2007) Diagnosis of breast tumours and evaluation of prognostic risk by using machine learning approaches. Commun Comput Inf Sci 2: 1250-1260.
-
(2007)
Commun Comput Inf Sci
, vol.2
, pp. 1250-1260
-
-
Yuan, Q.1
Cai, C.2
Xiao, H.3
|