메뉴 건너뛰기




Volumn 16, Issue 4, 1996, Pages 386-398

Neural networks in clinical medicine

Author keywords

error back propagation; medical decision making; multilayer perceptron; neural networks; nonlinearity; pattern recognition

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; CLINICAL MEDICINE; CLINICAL RESEARCH; DECISION THEORY; MEDICAL DECISION MAKING; TRAINING;

EID: 0029840811     PISSN: 0272989X     EISSN: None     Source Type: Journal    
DOI: 10.1177/0272989X9601600409     Document Type: Article
Times cited : (147)

References (91)
  • 3
    • 0026722929 scopus 로고
    • The application of backpropagation neural networks to problems in pathology and laboratory medicine
    • Astion ML, Wilding P. The application of backpropagation neural networks to problems in pathology and laboratory medicine Arch Path Lab Med. 1992;116:995-1001.
    • (1992) Arch Path Lab Med , vol.116 , pp. 995-1001
    • Astion, M.L.1    Wilding, P.2
  • 4
    • 0026580903 scopus 로고
    • Application of neural networks to the interpretation of laboratory data in cancer diagnosis
    • Astion ML, Wilding P. Application of neural networks to the interpretation of laboratory data in cancer diagnosis. Clin Chem. 1992;38:34-8.
    • (1992) Clin Chem , vol.38 , pp. 34-38
    • Astion, M.L.1    Wilding, P.2
  • 5
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum EB, Haussler D. What size net gives valid generalization? Neural Comput. 1989;1 151-60.
    • (1989) Neural Comput , vol.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 6
    • 0025934806 scopus 로고
    • Use of an artificial neural network for the diagnosis of myocardial infarction
    • Baxt WG. Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med. 1991;13:843-8.
    • (1991) Ann Intern Med , vol.13 , pp. 843-848
    • Baxt, W.G.1
  • 7
    • 0026438282 scopus 로고
    • Analysis of the clinical variables driving decision in an artificial neural network trained to identify the presence of myocardial infarction
    • Baxt WG. Analysis of the clinical variables driving decision in an artificial neural network trained to identify the presence of myocardial infarction. Ann Emerg Med 1992;21:1439-44.
    • (1992) Ann Emerg Med , vol.21 , pp. 1439-1444
    • Baxt, W.G.1
  • 8
    • 0012624610 scopus 로고
    • A neural network trained to identify the presence of myocardial infarction bases diagnostic decision on nonlinear relationships between input variables
    • Baxt WG. A neural network trained to identify the presence of myocardial infarction bases diagnostic decision on nonlinear relationships between input variables. Neural Comput Appl. 1993;1:176-82.
    • (1993) Neural Comput Appl , vol.1 , pp. 176-182
    • Baxt, W.G.1
  • 9
    • 0029295229 scopus 로고
    • Bootstrapping confidence intervals for clinical input variable effects in a network trained to identify the presence of myocardial infarction
    • Baxt WG, White H. Bootstrapping confidence intervals for clinical input variable effects in a network trained to identify the presence of myocardial infarction. Neural Comput. 1995; 7:624-38.
    • (1995) Neural Comput , vol.7 , pp. 624-638
    • Baxt, W.G.1    White, H.2
  • 10
    • 0029256585 scopus 로고
    • Determining input features for multilayer perceptrons
    • Belue LM, Bauer KW. Determining input features for multilayer perceptrons. Neurocomputing. 1995;7:111-22.
    • (1995) Neurocomputing , vol.7 , pp. 111-122
    • Belue, L.M.1    Bauer, K.W.2
  • 11
    • 0025590610 scopus 로고
    • A comparison of neural network and other pattern recognition approaches to the diagnosis of low back disorders
    • Bounds DG, Lloyd PJ, Mathew BG. A comparison of neural network and other pattern recognition approaches to the diagnosis of low back disorders. Neural Networks. 1990;3: 583-91.
    • (1990) Neural Networks , vol.3 , pp. 583-591
    • Bounds, D.G.1    Lloyd, P.J.2    Mathew, B.G.3
  • 16
    • 0000539898 scopus 로고
    • How tight are the vapnik-chervonenkis bounds?
    • Cohn D, Tesauro G, How tight are the vapnik-chervonenkis bounds? Neural Comput. 1992;4:249-69.
    • (1992) Neural Comput , vol.4 , pp. 249-269
    • Cohn, D.1    Tesauro, G.2
  • 17
    • 0027565986 scopus 로고
    • A neural network that predicts psychiatric length of stay
    • Davis G, Lowell WE, Davis GL. A neural network that predicts psychiatric length of stay MD Comput. 1993;10:87-92
    • (1993) MD Comput , vol.10 , pp. 87-92
    • Davis, G.1    Lowell, W.E.2    Davis, G.L.3
  • 19
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the em algorithm. J R Statist Soc B. 1977;39:1-38.
    • (1977) J R Statist Soc B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 23
    • 0027733424 scopus 로고
    • Modeling mortality in the intensive care unit: Comparing the performance of back-propagation, associative-learning neural network with multivariate logistic regression
    • Doig GS, et al. Modeling mortality in the intensive care unit: comparing the performance of back-propagation, associative-learning neural network with multivariate logistic regression. Proc Annu Symp Comput Appl Med Care. 1993; pp 361-5.
    • (1993) Proc Annu Symp Comput Appl Med Care , pp. 361-365
    • Doig, G.S.1
  • 26
    • 0017480535 scopus 로고
    • A recursive partitioning decision rule for nonparametric classification
    • Friedman JH. A recursive partitioning decision rule for nonparametric classification IEEE Trans Comput. 1977;16:404-8.
    • (1977) IEEE Trans Comput , vol.16 , pp. 404-408
    • Friedman, J.H.1
  • 29
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve Radiology. 1982;143:29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 32
    • 84907105591 scopus 로고
    • Evaluating black-boxes as medical decision aids: Issues arising from a study of neural networks
    • Hart A, Wyatt J. Evaluating black-boxes as medical decision aids: issues arising from a study of neural networks. Med Informatics. 1990;15:229-36.
    • (1990) Med Informatics , vol.15 , pp. 229-236
    • Hart, A.1    Wyatt, J.2
  • 35
    • 0025482774 scopus 로고
    • Classification of somatosensory-evoked potential recorded from patients with severe head injuries
    • Holdaway RM, White MW, Marmarou A. Classification of somatosensory-evoked potential recorded from patients with severe head injuries. IEEE Eng Med Biol 1990;9:43-9
    • (1990) IEEE Eng Med Biol , vol.9 , pp. 43-49
    • Holdaway, R.M.1    White, M.W.2    Marmarou, A.3
  • 36
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators Neural Networks. 1989,2:359-66.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 39
    • 0343878371 scopus 로고
    • Neural networks for medical diagnosis
    • Maren AJ, Harston CT, Papp RM (eds). San Diego, CA: Academic Press
    • Jones D Neural networks for medical diagnosis In Maren AJ, Harston CT, Papp RM (eds). Handbook of Neural Computing Applications. San Diego, CA: Academic Press, 1990, pp 309-17
    • (1990) Handbook of Neural Computing Applications , pp. 309-317
    • Jones, D.1
  • 43
    • 0028328448 scopus 로고
    • A technique for using neural network analysis to perform survival analysis of censored data
    • De Laurentiis M, Ravdin PM. A technique for using neural network analysis to perform survival analysis of censored data. Cancer Lett. 1994;77:127-38.
    • (1994) Cancer Lett , vol.77 , pp. 127-138
    • De Laurentiis, M.1    Ravdin, P.M.2
  • 44
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippmann RP. An introduction to computing with neural nets. IEEE ASSP Magazine. 1987;4(2):4-22.
    • (1987) IEEE ASSP Magazine , vol.4 , Issue.2 , pp. 4-22
    • Lippmann, R.P.1
  • 45
    • 0024771475 scopus 로고
    • Pattern classification using neural networks
    • November
    • Lippmann RP. Pattern classification using neural networks. IEEE Communications Magazine. November 1989, pp 47-64.
    • (1989) IEEE Communications Magazine , pp. 47-64
    • Lippmann, R.P.1
  • 46
    • 0027212862 scopus 로고
    • Statistics using neural networks: Chance effects
    • Livingstone DJ, Manallack DT. Statistics using neural networks: chance effects. J Med Chem 1993;36:1295-97.
    • (1993) J Med Chem , vol.36 , pp. 1295-1297
    • Livingstone, D.J.1    Manallack, D.T.2
  • 47
    • 0000478224 scopus 로고
    • Exploiting prior knowledge in network optimization: An illustration from medical prognosis
    • Lowe D, Webb AR. Exploiting prior knowledge in network optimization: an illustration from medical prognosis. Network: Computation in Neural Systems. 1990;1:299-323.
    • (1990) Network: Computation in Neural Systems , vol.1 , pp. 299-323
    • Lowe, D.1    Webb, A.R.2
  • 50
    • 0025435169 scopus 로고
    • Evacuation of neural network performance by receiver operating characteristic (ROC) analysis: Examples from the biotechnology domain
    • Meistrell ML Evacuation of neural network performance by receiver operating characteristic (ROC) analysis: examples from the biotechnology domain. Comput Meth Programs Biomed. 1990,32:73-80.
    • (1990) Comput Meth Programs Biomed , vol.32 , pp. 73-80
    • Meistrell, M.L.1
  • 52
    • 0026775675 scopus 로고
    • Review of neural network applications in medical imaging and signal processing
    • Miller AS, Blott BH, Hames TK. Review of neural network applications in medical imaging and signal processing. Med Biol Eng Comput. 1992;30:449-64.
    • (1992) Med Biol Eng Comput , vol.30 , pp. 449-464
    • Miller, A.S.1    Blott, B.H.2    Hames, T.K.3
  • 54
    • 0027138772 scopus 로고
    • Clinical decisions for psychiatric inpatients and their evaluation by a trained neural network
    • Modai I, Stoler M, Inbar-Saban N, Saban N. Clinical decisions for psychiatric inpatients and their evaluation by a trained neural network. Meth Inf Med. 1993;32:396-9.
    • (1993) Meth Inf Med , vol.32 , pp. 396-399
    • Modai, I.1    Stoler, M.2    Inbar-Saban, N.3    Saban, N.4
  • 55
    • 0027273716 scopus 로고
    • Application of multivariate, fuzzy set and neural network analysis in quantitative cytological examinations
    • Molnar B, Szentirmay Z, Bodo M, Sugar J, Feher J. Application of multivariate, fuzzy set and neural network analysis in quantitative cytological examinations. Analyt Cell Pathol. 1993;5:161-75
    • (1993) Analyt Cell Pathol , vol.5 , pp. 161-175
    • Molnar, B.1    Szentirmay, Z.2    Bodo, M.3    Sugar, J.4    Feher, J.5
  • 56
    • 0002595536 scopus 로고
    • Generalization and parameter estimation in feedforward nets: Some experiments
    • San Mateo, CA: Morgan Kauffman
    • Morgan N, Boulard H. Generalization and parameter estimation in feedforward nets: some experiments. Neural Information Processing Systems 2 San Mateo, CA: Morgan Kauffman, 1990, pp 630-7.
    • (1990) Neural Information Processing Systems , vol.2 , pp. 630-637
    • Morgan, N.1    Boulard, H.2
  • 59
    • 0027495376 scopus 로고
    • Neural network in the clinical diagnosis of acute pulmonary embolism
    • Patil S, Henry J, Rubenfire M, Stein P. Neural network in the clinical diagnosis of acute pulmonary embolism. Chest. 1993; 104:1685-9.
    • (1993) Chest , vol.104 , pp. 1685-1689
    • Patil, S.1    Henry, J.2    Rubenfire, M.3    Stein, P.4
  • 61
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • Poggio T, Girosi F. Regularization algorithms for learning that are equivalent to multilayer networks. Science. 1990;247: 978-82.
    • (1990) Science , vol.247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 62
    • 0004042460 scopus 로고
    • Proben 1 - A set of neural network benchmark problems and benchmarking rules
    • Fakultat fur Informatik, Universitat Karsruhe. in directory/pub/papers/techreport/1994
    • Prechelt L. Proben 1 - a set of neural network benchmark problems and benchmarking rules. Technical Report 21/94, Fakultat fur Informatik, Universitat Karsruhe. Available via ftp.ira.uka.de in directory/pub/papers/techreport/1994, 1994.
    • (1994) Technical Report 21/94
    • Prechelt, L.1
  • 64
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan JR. Induction of decision trees Machine Learning. 1986;1:81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 65
    • 0026332221 scopus 로고
    • Neural networks as a tool for utilizing laboratory information: Comparison with linear discriminant analysis and with classification and regression trees
    • Reibnegger G. Neural networks as a tool for utilizing laboratory information: comparison with linear discriminant analysis and with classification and regression trees. Proc Nat Acad Sci. 1988;88:11426-30.
    • (1988) Proc Nat Acad Sci , vol.88 , pp. 11426-11430
    • Reibnegger, G.1
  • 66
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • Richard MD, Lippmann RP. Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Computation. 1992,4:461-83.
    • (1992) Neural Computation , vol.4 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 67
    • 0028210335 scopus 로고
    • Artificial neural networks for early detection and diagnosis of cancer
    • Rogers SK, Ruck DW, Kabrisky M. Artificial neural networks for early detection and diagnosis of cancer. Cancer Lett. 1994;77:79-83.
    • (1994) Cancer Lett , vol.77 , pp. 79-83
    • Rogers, S.K.1    Ruck, D.W.2    Kabrisky, M.3
  • 70
    • 0038707120 scopus 로고
    • Rule extraction from facts and neural networks
    • Paris, France
    • Saito K, Nakano R. Rule extraction from facts and neural networks. In International Neural Network Conf, Paris, France, 1990, pp 379-82.
    • (1990) International Neural Network Conf , pp. 379-382
    • Saito, K.1    Nakano, R.2
  • 71
    • 0000383868 scopus 로고
    • Parallel networks that learn to pronounce English text
    • Sejnowski TJ, Rosenberg CR. Parallel networks that learn to pronounce English text. Complex Systems. 1987;1:145-68.
    • (1987) Complex Systems , vol.1 , pp. 145-168
    • Sejnowski, T.J.1    Rosenberg, C.R.2
  • 73
    • 0023137203 scopus 로고
    • Quantification of agreement in psychiatric diagnosis revisited
    • Shrout PE, Spitzer RL, Fleiss JL. Quantification of agreement in psychiatric diagnosis revisited. Arch Gen Psychiat. 1987; 44:172-7.
    • (1987) Arch Gen Psychiat , vol.44 , pp. 172-177
    • Shrout, P.E.1    Spitzer, R.L.2    Fleiss, J.L.3
  • 75
    • 0026723889 scopus 로고
    • Comparing and optimizing diagnostic tests: An information-theoretical approach
    • Somoza E, Mossman D. Comparing and optimizing diagnostic tests: an information-theoretical approach. Med Decis Making 1992;12:179-88.
    • (1992) Med Decis Making , vol.12 , pp. 179-188
    • Somoza, E.1    Mossman, D.2
  • 76
    • 0027729155 scopus 로고
    • A neural network approach to predicting admission decisions in a psychiatric emergency room
    • Somoza E, Somoza JR. A neural network approach to predicting admission decisions in a psychiatric emergency room. Med Decis Making. 1993;13:273-80.
    • (1993) Med Decis Making , vol.13 , pp. 273-280
    • Somoza, E.1    Somoza, J.R.2
  • 77
    • 0027034072 scopus 로고
    • Combining logistic regression and neural networks to create predictive models
    • Spackman KA. Combining logistic regression and neural networks to create predictive models. Proc Annu Symp Comput Appl Med Care, 1992, pp 456-39.
    • (1992) Proc Annu Symp Comput Appl Med Care , pp. 456-539
    • Spackman, K.A.1
  • 78
    • 0000629975 scopus 로고
    • Cross-validation choice and assessment of statistical predictions
    • Stone M. Cross-validation choice and assessment of statistical predictions. J R Statist Soc B. 1974;36:111-47.
    • (1974) J R Statist Soc B , vol.36 , pp. 111-147
    • Stone, M.1
  • 80
    • 0002855385 scopus 로고
    • Scaling relationships in back-propagation learning
    • Tesauro G. Scaling relationships in back-propagation learning. Complex Systems. 1988;2:39-44.
    • (1988) Complex Systems , vol.2 , pp. 39-44
    • Tesauro, G.1
  • 81
    • 0011873498 scopus 로고
    • Scaling relationships in back-propagation learning: Dependence on training set size
    • Tesauro G, Janssens B. Scaling relationships in back-propagation learning: dependence on training set size. Complex Systems. 1987;1:367-72.
    • (1987) Complex Systems , vol.1 , pp. 367-372
    • Tesauro, G.1    Janssens, B.2
  • 82
    • 0004169853 scopus 로고
    • A comparison of some error estimates for neural network models
    • Department of Preventive Medicine and Biostatistics, University of Toronto, Toronto, Ont., Canada
    • Tibshirani R. A comparison of some error estimates for neural network models. Technical Report, Department of Preventive Medicine and Biostatistics, University of Toronto, Toronto, Ont., Canada, 1994.
    • (1994) Technical Report
    • Tibshirani, R.1
  • 83
    • 0027288642 scopus 로고
    • Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery
    • Tu JV, Guerriere RJ. Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery Comput Biomed Res. 1993;26:220-9.
    • (1993) Comput Biomed Res , vol.26 , pp. 220-229
    • Tu, J.V.1    Guerriere, R.J.2
  • 84
    • 30244528297 scopus 로고
    • Biomedical application of neural networks in Japan
    • San Diego, CA: June 5-9
    • Usui S, Toda N. Biomedical application of neural networks in Japan. Proc World Conference on Neural Networks, San Diego, CA: June 5-9, 1994, pp 63-8.
    • (1994) Proc World Conference on Neural Networks , pp. 63-68
    • Usui, S.1    Toda, N.2
  • 85
    • 0012898666 scopus 로고
    • Selecting neural network architectures via the prediction risk: Application to corporate bond rating prediction
    • Washington, DC: IEEE Computer Society Press
    • Utans J, Moody J. Selecting neural network architectures via the prediction risk: application to corporate bond rating prediction. Proc First Int Conf Artif Intell Applications on Wall Street. Washington, DC: IEEE Computer Society Press, 1993, pp 35-41.
    • (1993) Proc First Int Conf Artif Intell Applications on Wall Street , pp. 35-41
    • Utans, J.1    Moody, J.2
  • 86
    • 84889508121 scopus 로고
    • [Various] Special session on biomedical applications. San Diego, CA, June 5-9
    • [Various] Special session on biomedical applications. Proc World Conference on Neural Networks, San Diego, CA, June 5-9, 1994, pp 37-138.
    • (1994) Proc World Conference on Neural Networks , pp. 37-138
  • 87
    • 84889536480 scopus 로고
    • [Various]. Special session on medical applications. June 27-29, 1994
    • [Various]. Special session on medical applications. IEEE Int Conf Neural Networks, June 27-29, 1994, pp 3437-559, 1994.
    • (1994) IEEE Int Conf Neural Networks , pp. 3437-3559
  • 88
    • 1342291748 scopus 로고
    • Neural networks in the biomedical sciences: A survey of 386 publications since the beginning of 1991
    • San Diego, CA, June 5-9
    • Weinstein JN, Myers T, Casciari JJ, Buolamwini J, Raghavan K. Neural networks in the biomedical sciences: a survey of 386 publications since the beginning of 1991. Proc World Conf Neural Networks, San Diego, CA, June 5-9, 1994, pp 121-6.
    • (1994) Proc World Conf Neural Networks , pp. 121-126
    • Weinstein, J.N.1    Myers, T.2    Casciari, J.J.3    Buolamwini, J.4    Raghavan, K.5
  • 89
    • 84889539368 scopus 로고
    • Neural networks in the discovery of new treatments for cancer and AIDS
    • San Diego, CA, June 5-9
    • Weinstein, JN, Rubinstein, LV, Koutsoukos AD, et al. Neural networks in the discovery of new treatments for cancer and AIDS. Proc World Conf Neural Networks, San Diego, CA, June 5-9, 1994, pp 111-6.
    • (1994) Proc World Conf Neural Networks , pp. 111-116
    • Weinstein, J.N.1    Rubinstein, L.V.2    Koutsoukos, A.D.3
  • 91
    • 0028219772 scopus 로고
    • Application of backpropagation neural networks to diagnosis of breast and ovarian cancer
    • Wilding P, Morgan MA, Grygotis AE, Shoffner MA, Rosato EF. Application of backpropagation neural networks to diagnosis of breast and ovarian cancer. Cancer Lett. 1994;77:145-53.
    • (1994) Cancer Lett , vol.77 , pp. 145-153
    • Wilding, P.1    Morgan, M.A.2    Grygotis, A.E.3    Shoffner, M.A.4    Rosato, E.F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.