메뉴 건너뛰기




Volumn 122, Issue SUPPL. 1, 2004, Pages 59-67

Methodological approach to the use of artificial neural networks for predicting results in medicine;Aproximación metodológica al uso de redes neuronales artificiales para la predicción de resultados en medicina

Author keywords

Artificial neural networks; Logistic regression; Outcome prediction

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; BIOMEDICINE; CLINICAL PRACTICE; INTERMETHOD COMPARISON; LOGISTIC REGRESSION ANALYSIS; METHODOLOGY; MULTILAYER PERCEPTION TRAINED WITH BACK PROPAGATION ALGORITHM; NONLINEAR SYSTEM; OUTCOMES RESEARCH; PREDICTION; PROBABILITY; REVIEW; STATISTICAL ANALYSIS; STATISTICAL MODEL;

EID: 1642359158     PISSN: 00257753     EISSN: None     Source Type: Journal    
DOI: 10.1157/13057536     Document Type: Review
Times cited : (20)

References (52)
  • 1
    • 0034732710 scopus 로고    scopus 로고
    • Prognostic modelling with logistic regression analysis: A comparison of selection and estimation methods in small data sets
    • Steyerberg EW, Eijkemans MJC, Harrell FE, Habbema JDF. Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets. Statist Med 2000;19:1059-79.
    • (2000) Statist Med , vol.19 , pp. 1059-1079
    • Steyerberg, E.W.1    Eijkemans, M.J.C.2    Harrell, F.E.3    Habbema, J.D.F.4
  • 2
    • 0028044828 scopus 로고
    • Artificial neural networks for cancer research: Outcome prediction
    • Burke HB. Artificial neural networks for cancer research: outcome prediction. Sem in Surg Oncol 1994;10:73-9.
    • (1994) Sem in Surg Oncol , vol.10 , pp. 73-79
    • Burke, H.B.1
  • 6
    • 0028788276 scopus 로고
    • Application of artificial neural networks to clinical medicine
    • Baxt WG. Application of artificial neural networks to clinical medicine. Lancet 1995;346:1135-8.
    • (1995) Lancet , vol.346 , pp. 1135-1138
    • Baxt, W.G.1
  • 7
    • 0032011752 scopus 로고    scopus 로고
    • Use of neural networks in medical diagnosis
    • Armoni A. Use of neural networks in medical diagnosis. MD Computing 1998;15:100-4.
    • (1998) MD Computing , vol.15 , pp. 100-104
    • Armoni, A.1
  • 8
    • 0028812688 scopus 로고
    • Artificial neural networks in pathology and medical laboratories
    • Dybowski R, Gant V. Artificial neural networks in pathology and medical laboratories. Lancet 1995;346:1203-7.
    • (1995) Lancet , vol.346 , pp. 1203-1207
    • Dybowski, R.1    Gant, V.2
  • 9
    • 0030987793 scopus 로고    scopus 로고
    • Use of a probabilistic neural network to estimate the risk of mortality after cardiac surgery
    • Orr RK. Use of a probabilistic neural network to estimate the risk of mortality after cardiac surgery. Med Decis Making 1997;17:178-85.
    • (1997) Med Decis Making , vol.17 , pp. 178-185
    • Orr, R.K.1
  • 11
    • 0031024354 scopus 로고    scopus 로고
    • Neural networks as predictors of outcomes in alcoholic patients with severe liver disease
    • Lapuerta P, Rajan S, Bonacini M. Neural networks as predictors of outcomes in alcoholic patients with severe liver disease. Hepatology 1997;25:302-6.
    • (1997) Hepatology , vol.25 , pp. 302-306
    • Lapuerta, P.1    Rajan, S.2    Bonacini, M.3
  • 12
    • 0032732069 scopus 로고    scopus 로고
    • A comparison of ICU mortality prediction using the APACHE II scoring system and artificial neural network
    • Wong LSS, Young JD. A comparison of ICU mortality prediction using the APACHE II scoring system and artificial neural network. Anaesthesia 1999;54:1048-54.
    • (1999) Anaesthesia , vol.54 , pp. 1048-1054
    • Wong, L.S.S.1    Young, J.D.2
  • 13
    • 0035871573 scopus 로고    scopus 로고
    • Neural network and regression predictions of 5-year survival after colon carcinoma treatment
    • Snow PB, Kerr DJ, Brandt JM, Rodvold DM. Neural network and regression predictions of 5-year survival after colon carcinoma treatment. Cancer 2001;91:1673-8.
    • (2001) Cancer , vol.91 , pp. 1673-1678
    • Snow, P.B.1    Kerr, D.J.2    Brandt, J.M.3    Rodvold, D.M.4
  • 14
    • 0035871332 scopus 로고    scopus 로고
    • Artificial neural networks for prostate carcinoma risk assessment. An overview
    • Montie JE, Wei JT. Artificial neural networks for prostate carcinoma risk assessment. An overview. Cancer 2001;91:1647-52.
    • (2001) Cancer , vol.91 , pp. 1647-1652
    • Montie, J.E.1    Wei, J.T.2
  • 15
    • 0030882176 scopus 로고    scopus 로고
    • Early assessment of patients with suspected acute myocardial infarction by biochemical monitoring and neural network analysis
    • Ellenius J, Groth T, Lindahl B, Wallentin L. Early assessment of patients with suspected acute myocardial infarction by biochemical monitoring and neural network analysis. Clin Chem 1997;43:1919-25.
    • (1997) Clin Chem , vol.43 , pp. 1919-1925
    • Ellenius, J.1    Groth, T.2    Lindahl, B.3    Wallentin, L.4
  • 16
    • 0034009298 scopus 로고    scopus 로고
    • Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks
    • Nakamura K, Yoshida H, Engelmann R, MacMahon H, Katsuragawa S, Ishida T, et al. Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks. Radiology 2000;214:823-30.
    • (2000) Radiology , vol.214 , pp. 823-830
    • Nakamura, K.1    Yoshida, H.2    Engelmann, R.3    MacMahon, H.4    Katsuragawa, S.5    Ishida, T.6
  • 18
    • 0032694357 scopus 로고    scopus 로고
    • Predicting active pulmonary tuberculosis using an artificial neural network
    • El-Solh AA, Hisao C, Goodnough S, Serghani J, Grant BJB. Predicting active pulmonary tuberculosis using an artificial neural network. Chest 1999;116:968-73.
    • (1999) Chest , vol.116 , pp. 968-973
    • El-Solh, A.A.1    Hisao, C.2    Goodnough, S.3    Serghani, J.4    Grant, B.J.B.5
  • 19
    • 0027729155 scopus 로고
    • A neural-network approach to predicting admission decisions in a psychiatric emergency room
    • Somoza E, Somoza JR. A neural-network approach to predicting admission decisions in a psychiatric emergency room. Med Decis Making 1993;13:273-80.
    • (1993) Med Decis Making , vol.13 , pp. 273-280
    • Somoza, E.1    Somoza, J.R.2
  • 20
    • 0028101663 scopus 로고
    • Application of neural networks to automated assigment of NMR spectra of proteins
    • Hare BJ, Prestegard JH. Application of neural networks to automated assigment of NMR spectra of proteins J Biomol NMR 1994;4:35-46.
    • (1994) J Biomol NMR , vol.4 , pp. 35-46
    • Hare, B.J.1    Prestegard, J.H.2
  • 21
    • 0028127877 scopus 로고
    • Neural-networks clasiffication of normal and Alzheimer's disease subjects using high-resolution and low-resolution PET cameras
    • Kippenhan JS, Barker WW, Angel J, Grady C, Duara R. Neural-networks clasiffication of normal and Alzheimer's disease subjects using high-resolution and low-resolution PET cameras. J Nucl Med 1994;35:7-15.
    • (1994) J Nucl Med , vol.35 , pp. 7-15
    • Kippenhan, J.S.1    Barker, W.W.2    Angel, J.3    Grady, C.4    Duara, R.5
  • 22
    • 0027415148 scopus 로고
    • Classification of electrocardiographic ST-T segments-human expert vs artificial neural network
    • Edenbrandt L, Devine B, Macfarlane PW. Classification of electrocardiographic ST-T segments-human expert vs artificial neural network. Eur Heart J 1993;14:464-8.
    • (1993) Eur Heart J , vol.14 , pp. 464-468
    • Edenbrandt, L.1    Devine, B.2    Macfarlane, P.W.3
  • 23
    • 0028146347 scopus 로고
    • Discrimination between demented patients and normal based on topographic EEG slow wave activity: Comparison between z statistics, discriminant analysis and artificial neural network classifiers
    • Anderer P, Saleteu B, Kloppel B, Semlitsch HV, Werner H. Discrimination between demented patients and normal based on topographic EEG slow wave activity: comparison between z statistics, discriminant analysis and artificial neural network classifiers. Electroencephalogr Clin Neuropsychol 1994;91:108-17.
    • (1994) Electroencephalogr Clin Neuropsychol , vol.91 , pp. 108-117
    • Anderer, P.1    Saleteu, B.2    Kloppel, B.3    Semlitsch, H.V.4    Werner, H.5
  • 24
    • 0032148746 scopus 로고    scopus 로고
    • Prediction of plasma levels of aminoglycoside antibiotic in patients with severe illness by means of an artificial neural network simulator
    • Yamamura S, Nishizawa K, Hirano M, Momose Y, Kimura A. Prediction of plasma levels of aminoglycoside antibiotic in patients with severe illness by means of an artificial neural network simulator. J Pharm Sci 1998;1:95-101.
    • (1998) J Pharm Sci , vol.1 , pp. 95-101
    • Yamamura, S.1    Nishizawa, K.2    Hirano, M.3    Momose, Y.4    Kimura, A.5
  • 25
    • 0035871371 scopus 로고    scopus 로고
    • Artificial neural networks. Opening the black box
    • Dayhoff JE, DeLeo JM. Artificial neural networks. Opening the black box. Cancer 2001;91:1615-35.
    • (2001) Cancer , vol.91 , pp. 1615-1635
    • Dayhoff, J.E.1    DeLeo, J.M.2
  • 27
    • 0036357792 scopus 로고    scopus 로고
    • Conversion of laparoscopic cholecystectomy to open cholecystectomy in acute cholecystitis: Artificial neural networks improve the prediction of conversion
    • Eldar S, Siegelmann HT, Buzaglo D, Matter I, Cohen A, Sabo E, et al. Conversion of laparoscopic cholecystectomy to open cholecystectomy in acute cholecystitis: artificial neural networks improve the prediction of conversion. World J Surg 2002;26:79-85.
    • (2002) World J Surg , vol.26 , pp. 79-85
    • Eldar, S.1    Siegelmann, H.T.2    Buzaglo, D.3    Matter, I.4    Cohen, A.5    Sabo, E.6
  • 28
    • 0032520167 scopus 로고    scopus 로고
    • Prediction and cross-validation of neural networks versus logistic regression: Using hepatic disorders as an example
    • Duh MS, Walker AM, Pagano M, Kronlund K. Prediction and cross-validation of neural networks versus logistic regression: using hepatic disorders as an example. Am J Epidemiol 1998;147:407-13.
    • (1998) Am J Epidemiol , vol.147 , pp. 407-413
    • Duh, M.S.1    Walker, A.M.2    Pagano, M.3    Kronlund, K.4
  • 29
    • 0034789548 scopus 로고    scopus 로고
    • The use of neural networks and logistic regression analysis for predicting pathological stage in men undergoing radical prostatectomy: A population based study
    • Borque A, Sanz G, Allepuz C, Plaza L, Rioja LA. The use of neural networks and logistic regression analysis for predicting pathological stage in men undergoing radical prostatectomy: a population based study. J Urol 2001;166:1672-8.
    • (2001) J Urol , vol.166 , pp. 1672-1678
    • Borque, A.1    Sanz, G.2    Allepuz, C.3    Plaza, L.4    Rioja, L.A.5
  • 30
    • 0035075212 scopus 로고    scopus 로고
    • Artificial neural network predicts CT scan abnormalities in paediatric patients with closed head injury
    • Sinha M, Kennedy CS, Ramundo ML. Artificial neural network predicts CT scan abnormalities in paediatric patients with closed head injury. J Trauma 2001;50:308-12.
    • (2001) J Trauma , vol.50 , pp. 308-312
    • Sinha, M.1    Kennedy, C.S.2    Ramundo, M.L.3
  • 32
    • 0027288642 scopus 로고
    • Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery
    • Tu JV, Guerriere MRJ. Use of a neural network as a predictive instrument for length of stay in the intensive care unit following cardiac surgery. Comput Biomed Res 1993;26:220-9.
    • (1993) Comput Biomed Res , vol.26 , pp. 220-229
    • Tu, J.V.1    Guerriere, M.R.J.2
  • 33
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 1996;49;11:1225-31.
    • (1996) J Clin Epidemiol , vol.49 , Issue.11 , pp. 1225-1231
    • Tu, J.V.1
  • 34
    • 0035871395 scopus 로고    scopus 로고
    • Comparison of artificial neural networks with other statistical approaches. Results from medical data sets
    • Sargent DJ. Comparison of artificial neural networks with other statistical approaches. Results from medical data sets. Cancer 2001;91:1636-42.
    • (2001) Cancer , vol.91 , pp. 1636-1642
    • Sargent, D.J.1
  • 35
    • 0030914688 scopus 로고    scopus 로고
    • Outcome after severe head injury: An analysis of prediction based upon comparison of neural network versus logistic regression analysis
    • Lang EW, Pitts LH, Damron SL, Rutledge R. Outcome after severe head injury: an analysis of prediction based upon comparison of neural network versus logistic regression analysis. Neurol Res 1997;19:274-80.
    • (1997) Neurol Res , vol.19 , pp. 274-280
    • Lang, E.W.1    Pitts, L.H.2    Damron, S.L.3    Rutledge, R.4
  • 36
    • 0033811040 scopus 로고    scopus 로고
    • An artificial neural network as a model for prediction of survival in trauma patients: Validation for a regional trauma area
    • DiRusso SM, Sullivan T, Holly C, Nealon S, Savino J. An artificial neural network as a model for prediction of survival in trauma patients: validation for a regional trauma area. J Trauma 2000;49:212-23.
    • (2000) J Trauma , vol.49 , pp. 212-223
    • DiRusso, S.M.1    Sullivan, T.2    Holly, C.3    Nealon, S.4    Savino, J.5
  • 37
    • 0029383123 scopus 로고
    • A comparison of performance of mathematical predictive methods for medical diagnosis: Identifying acute cardiac ischemia among emergency department patients
    • Selker HP, Griffith JL, Patil S, Long WJ, D'Agostino RB. A comparison of performance of mathematical predictive methods for medical diagnosis: identifying acute cardiac ischemia among emergency department patients. J Investig Med 1995;43:468-76.
    • (1995) J Investig Med , vol.43 , pp. 468-476
    • Selker, H.P.1    Griffith, J.L.2    Patil, S.3    Long, W.J.4    D'Agostino, R.B.5
  • 38
    • 0034728368 scopus 로고    scopus 로고
    • On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology
    • Schwarzer G, Vach W, Schumacher M. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Statist Med 2000;19:541-61.
    • (2000) Statist Med , vol.19 , pp. 541-561
    • Schwarzer, G.1    Vach, W.2    Schumacher, M.3
  • 39
    • 0035871369 scopus 로고    scopus 로고
    • Conference concluding remarks
    • Levine RF. Conference concluding remarks. Cancer 2001;91:1696-7.
    • (2001) Cancer , vol.91 , pp. 1696-1697
    • Levine, R.F.1
  • 40
    • 0030812302 scopus 로고    scopus 로고
    • Coronary artery bypass risk prediction using neural networks
    • Lippmann RP, Shahian DM. Coronary artery bypass risk prediction using neural networks. Ann Thorac Surg 1997;63:1635-43.
    • (1997) Ann Thorac Surg , vol.63 , pp. 1635-1643
    • Lippmann, R.P.1    Shahian, D.M.2
  • 41
    • 0031921044 scopus 로고    scopus 로고
    • Prediction of equilibrated postdialysis BUN by an artificial neural network in high-efficiency hemodialysis
    • Guh JY, Yang CY, Yang JM, Chen LM, Lai YH. Prediction of equilibrated postdialysis BUN by an artificial neural network in high-efficiency hemodialysis. Am J Kidney Dis 1998;31:638-46.
    • (1998) Am J Kidney Dis , vol.31 , pp. 638-646
    • Guh, J.Y.1    Yang, C.Y.2    Yang, J.M.3    Chen, L.M.4    Lai, Y.H.5
  • 42
    • 0035116142 scopus 로고    scopus 로고
    • Predicting hospital mortality for patients in the intensive care unit: A comparison of artificial neural networks with logistic regression models
    • Clermont G, Angus DC, DiRusso SM, Griffin M, Linde-Zwirble WT. Predicting hospital mortality for patients in the intensive care unit: a comparison of artificial neural networks with logistic regression models. Crit Care Med 2001;29:291-6.
    • (2001) Crit Care Med , vol.29 , pp. 291-296
    • Clermont, G.1    Angus, D.C.2    DiRusso, S.M.3    Griffin, M.4    Linde-Zwirble, W.T.5
  • 43
    • 0030995524 scopus 로고    scopus 로고
    • The effect of data sampling on the performance evaluation of artificial neural networks in medical diagnosis
    • Tourassi GD, Floyd CE. The effect of data sampling on the performance evaluation of artificial neural networks in medical diagnosis. Med Decis Making 1997;17:186-92.
    • (1997) Med Decis Making , vol.17 , pp. 186-192
    • Tourassi, G.D.1    Floyd, C.E.2
  • 46
    • 0035871394 scopus 로고    scopus 로고
    • Challenges in prognostic analysis
    • Concato J. Challenges in prognostic analysis. Cancer 2001;91:1607-14.
    • (2001) Cancer , vol.91 , pp. 1607-1614
    • Concato, J.1
  • 47
    • 0034736564 scopus 로고    scopus 로고
    • Validation, calibration, revision and combination of prognostic survival models
    • Van Houwelingen HC. Validation, calibration, revision and combination of prognostic survival models. Statist Med 2000;19:3401-15.
    • (2000) Statist Med , vol.19 , pp. 3401-3415
    • Van Houwelingen, H.C.1
  • 48
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982;143:29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 50
    • 0020063002 scopus 로고
    • A review of goodness of fit statistics for use in the development of logistic regression models
    • Lemeshow S, Hosmer DW. A review of goodness of fit statistics for use in the development of logistic regression models. Am J Epidemiol 1982;115:92-106.
    • (1982) Am J Epidemiol , vol.115 , pp. 92-106
    • Lemeshow, S.1    Hosmer, D.W.2
  • 51
    • 0030951433 scopus 로고    scopus 로고
    • Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with non small cell lung carcinoma
    • Jefferson MF, Pendleton N, Lucas SB, Horan MA. Comparison of a genetic algorithm neural network with logistic regression for predicting outcome after surgery for patients with non small cell lung carcinoma. Cancer 1997;79:1338-42.
    • (1997) Cancer , vol.79 , pp. 1338-1342
    • Jefferson, M.F.1    Pendleton, N.2    Lucas, S.B.3    Horan, M.A.4
  • 52
    • 0030603526 scopus 로고    scopus 로고
    • Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm
    • Dybowski R, Weller P, Chang R, Gant V. Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm. Lancet 1996;347:1146-50.
    • (1996) Lancet , vol.347 , pp. 1146-1150
    • Dybowski, R.1    Weller, P.2    Chang, R.3    Gant, V.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.