-
2
-
-
1242294372
-
Generation of Leishmania donovani axenic amastigotes: their growth and biological characteristics
-
Debrabant A., et al. Generation of Leishmania donovani axenic amastigotes: their growth and biological characteristics. Int. J. Parasitol. 2004, 34:205-217.
-
(2004)
Int. J. Parasitol.
, vol.34
, pp. 205-217
-
-
Debrabant, A.1
-
3
-
-
0035005951
-
In vitro cultivation and characterization of axenic amastigotes of Leishmania
-
Gupta N., et al. In vitro cultivation and characterization of axenic amastigotes of Leishmania. Trends Parasitol. 2001, 17:150-153.
-
(2001)
Trends Parasitol.
, vol.17
, pp. 150-153
-
-
Gupta, N.1
-
4
-
-
0032169091
-
Characterization of developmentally-regulated activities in axenic amastigotes of Leishmania donovani
-
Saar Y., et al. Characterization of developmentally-regulated activities in axenic amastigotes of Leishmania donovani. Mol. Biochem. Parasitol. 1998, 95:9-20.
-
(1998)
Mol. Biochem. Parasitol.
, vol.95
, pp. 9-20
-
-
Saar, Y.1
-
5
-
-
84864999160
-
What has proteomics taught us about Leishmania development?
-
Tsigankov P., et al. What has proteomics taught us about Leishmania development?. Parasitology 2012, 139:1146-1157.
-
(2012)
Parasitology
, vol.139
, pp. 1146-1157
-
-
Tsigankov, P.1
-
6
-
-
33644828887
-
Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana
-
Holzer T.R., et al. Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Mol. Biochem. Parasitol. 2006, 146:198-218.
-
(2006)
Mol. Biochem. Parasitol.
, vol.146
, pp. 198-218
-
-
Holzer, T.R.1
-
7
-
-
33846259286
-
Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation
-
Saxena A., et al. Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Mol. Biochem. Parasitol. 2007, 152:53-65.
-
(2007)
Mol. Biochem. Parasitol.
, vol.152
, pp. 53-65
-
-
Saxena, A.1
-
8
-
-
43549096649
-
Post-translational modification of cellular proteins during Leishmania donovani differentiation
-
Rosenzweig D., et al. Post-translational modification of cellular proteins during Leishmania donovani differentiation. Proteomics 2008, 8:1843-1850.
-
(2008)
Proteomics
, vol.8
, pp. 1843-1850
-
-
Rosenzweig, D.1
-
9
-
-
79551644361
-
Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania
-
Lahav T., et al. Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J. 2011, 25:515-525.
-
(2011)
FASEB J.
, vol.25
, pp. 515-525
-
-
Lahav, T.1
-
10
-
-
38949167477
-
Retooling Leishmania metabolism: from sand fly gut to human macrophage
-
Rosenzweig D., et al. Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J. 2008, 22:590-602.
-
(2008)
FASEB J.
, vol.22
, pp. 590-602
-
-
Rosenzweig, D.1
-
11
-
-
70449566764
-
Comparative expression profiling of Leishmania: modulation in gene expression between species and in different host genetic backgrounds
-
Depledge D.P., et al. Comparative expression profiling of Leishmania: modulation in gene expression between species and in different host genetic backgrounds. PLoS Negl. Trop. Dis. 2009, 3:e476.
-
(2009)
PLoS Negl. Trop. Dis.
, vol.3
-
-
Depledge, D.P.1
-
12
-
-
0026674542
-
Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms
-
Bates P.A., et al. Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms. Parasitology 1992, 105:193-202.
-
(1992)
Parasitology
, vol.105
, pp. 193-202
-
-
Bates, P.A.1
-
13
-
-
33748329767
-
Housekeeping by Leishmania
-
Bates P.A. Housekeeping by Leishmania. Trends Parasitol. 2006, 22:447-448.
-
(2006)
Trends Parasitol.
, vol.22
, pp. 447-448
-
-
Bates, P.A.1
-
14
-
-
84874577556
-
Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels
-
Mittra B., et al. Iron uptake controls the generation of Leishmania infective forms through regulation of ROS levels. J. Exp. Med. 2013, 210:401-416.
-
(2013)
J. Exp. Med.
, vol.210
, pp. 401-416
-
-
Mittra, B.1
-
15
-
-
38049186501
-
Iron acquisition within host cells and the pathogenicity of Leishmania
-
Huynh C., Andrews N.W. Iron acquisition within host cells and the pathogenicity of Leishmania. Cell. Microbiol. 2008, 10:293-300.
-
(2008)
Cell. Microbiol.
, vol.10
, pp. 293-300
-
-
Huynh, C.1
Andrews, N.W.2
-
16
-
-
77953618426
-
Iron metabolism in trypanosomatids, and its crucial role in infection
-
Taylor M.C., Kelly J.M. Iron metabolism in trypanosomatids, and its crucial role in infection. Parasitology 2010, 137:899-917.
-
(2010)
Parasitology
, vol.137
, pp. 899-917
-
-
Taylor, M.C.1
Kelly, J.M.2
-
17
-
-
0035209779
-
SLC11A1 (formerly NRAMP1) and disease resistance
-
Blackwell J.M., et al. SLC11A1 (formerly NRAMP1) and disease resistance. Cell. Microbiol. 2001, 3:773-784.
-
(2001)
Cell. Microbiol.
, vol.3
, pp. 773-784
-
-
Blackwell, J.M.1
-
18
-
-
33847685814
-
Intracellular Leishmania: your iron or mine?
-
Marquis J.F., Gros P. Intracellular Leishmania: your iron or mine?. Trends Microbiol. 2007, 15:93-95.
-
(2007)
Trends Microbiol.
, vol.15
, pp. 93-95
-
-
Marquis, J.F.1
Gros, P.2
-
19
-
-
58149291350
-
Leishmania donovani depletes labile iron pool to exploit iron uptake capacity of macrophage for its intracellular growth
-
Das N.K., et al. Leishmania donovani depletes labile iron pool to exploit iron uptake capacity of macrophage for its intracellular growth. Cell. Microbiol. 2009, 11:83-94.
-
(2009)
Cell. Microbiol.
, vol.11
, pp. 83-94
-
-
Das, N.K.1
-
20
-
-
0031665621
-
Subverted transferrin trafficking in Leishmania-infected macrophages
-
Borges V.M., et al. Subverted transferrin trafficking in Leishmania-infected macrophages. Parasitol. Res. 1998, 84:811-822.
-
(1998)
Parasitol. Res.
, vol.84
, pp. 811-822
-
-
Borges, V.M.1
-
21
-
-
0028058934
-
Acquisition of iron from transferrin and lactoferrin by the protozoan Leishmania chagasi
-
Wilson M.E., et al. Acquisition of iron from transferrin and lactoferrin by the protozoan Leishmania chagasi. Infect. Immun. 1994, 62:3262-3269.
-
(1994)
Infect. Immun.
, vol.62
, pp. 3262-3269
-
-
Wilson, M.E.1
-
22
-
-
0032171693
-
Iron acquisition by parasitic protozoa
-
Wilson M.E., Britigan B.E. Iron acquisition by parasitic protozoa. Parasitol. Today 1998, 14:348-353.
-
(1998)
Parasitol. Today
, vol.14
, pp. 348-353
-
-
Wilson, M.E.1
Britigan, B.E.2
-
23
-
-
79959535754
-
LFR1 ferric iron reductase of Leishmania amazonensis is essential for the generation of infective parasite forms
-
Flannery A.R., et al. LFR1 ferric iron reductase of Leishmania amazonensis is essential for the generation of infective parasite forms. J. Biol. Chem. 2011, 286:23266-23279.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 23266-23279
-
-
Flannery, A.R.1
-
24
-
-
33749325014
-
A Leishmania amazonensis ZIP family iron transporter is essential for parasite replication within macrophage phagolysosomes
-
Huynh C., et al. A Leishmania amazonensis ZIP family iron transporter is essential for parasite replication within macrophage phagolysosomes. J. Exp. Med. 2006, 203:2363-2375.
-
(2006)
J. Exp. Med.
, vol.203
, pp. 2363-2375
-
-
Huynh, C.1
-
25
-
-
84864305271
-
Getting a sense for signals: regulation of the plant iron deficiency response
-
Hindt M.N., Guerinot M.L. Getting a sense for signals: regulation of the plant iron deficiency response. Biochim. Biophys. Acta 2012, 1823:1521-1530.
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, pp. 1521-1530
-
-
Hindt, M.N.1
Guerinot, M.L.2
-
26
-
-
79952441522
-
A new ATP-binding cassette protein is involved in intracellular haem trafficking in Leishmania
-
Campos-Salinas J., et al. A new ATP-binding cassette protein is involved in intracellular haem trafficking in Leishmania. Mol. Microbiol. 2011, 79:1430-1444.
-
(2011)
Mol. Microbiol.
, vol.79
, pp. 1430-1444
-
-
Campos-Salinas, J.1
-
27
-
-
57849159746
-
Heme as a source of iron to Leishmania infantum amastigotes
-
Carvalho S., et al. Heme as a source of iron to Leishmania infantum amastigotes. Acta Trop. 2009, 109:131-135.
-
(2009)
Acta Trop.
, vol.109
, pp. 131-135
-
-
Carvalho, S.1
-
28
-
-
84864586498
-
Heme uptake by Leishmania amazonensis is mediated by the transmembrane protein LHR1
-
Huynh C., et al. Heme uptake by Leishmania amazonensis is mediated by the transmembrane protein LHR1. PLoS Pathog. 2012, 8:e1002795.
-
(2012)
PLoS Pathog.
, vol.8
-
-
Huynh, C.1
-
29
-
-
33748300634
-
Cysteine peptidases CPA and CPB are vital for autophagy and differentiation in Leishmania mexicana
-
Williams R.A., et al. Cysteine peptidases CPA and CPB are vital for autophagy and differentiation in Leishmania mexicana. Mol. Microbiol. 2006, 61:655-674.
-
(2006)
Mol. Microbiol.
, vol.61
, pp. 655-674
-
-
Williams, R.A.1
-
30
-
-
13944278132
-
Mitochondria, oxidants, and aging
-
Balaban R.S., et al. Mitochondria, oxidants, and aging. Cell 2005, 120:483-495.
-
(2005)
Cell
, vol.120
, pp. 483-495
-
-
Balaban, R.S.1
-
31
-
-
23844558266
-
A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
-
Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39:359-407.
-
(2005)
Annu. Rev. Genet.
, vol.39
, pp. 359-407
-
-
Wallace, D.C.1
-
32
-
-
3042807919
-
Role of superoxide as a signaling molecule
-
Buetler T.M., et al. Role of superoxide as a signaling molecule. News Physiol. Sci. 2004, 19:120-123.
-
(2004)
News Physiol. Sci.
, vol.19
, pp. 120-123
-
-
Buetler, T.M.1
-
33
-
-
33745631769
-
2, a necessary evil for cell signaling
-
2, a necessary evil for cell signaling. Science 2006, 312:1882-1883.
-
(2006)
Science
, vol.312
, pp. 1882-1883
-
-
Rhee, S.G.1
-
34
-
-
70349446465
-
Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation
-
Owusu-Ansah E., Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 2009, 461:537-541.
-
(2009)
Nature
, vol.461
, pp. 537-541
-
-
Owusu-Ansah, E.1
Banerjee, U.2
-
35
-
-
77956186783
-
Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes
-
Hamanaka R.B., Chandel N.S. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 2010, 35:505-513.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 505-513
-
-
Hamanaka, R.B.1
Chandel, N.S.2
-
36
-
-
1342328149
-
Superoxide dismutases in malignant cells and human tumors
-
Kinnula V.L., Crapo J.D. Superoxide dismutases in malignant cells and human tumors. Free Radic. Biol. Med. 2004, 36:718-744.
-
(2004)
Free Radic. Biol. Med.
, vol.36
, pp. 718-744
-
-
Kinnula, V.L.1
Crapo, J.D.2
-
37
-
-
33746802358
-
Redox signaling in cancer biology
-
Gius D., Spitz D.R. Redox signaling in cancer biology. Antioxid. Redox Signal. 2006, 8:1249-1252.
-
(2006)
Antioxid. Redox Signal.
, vol.8
, pp. 1249-1252
-
-
Gius, D.1
Spitz, D.R.2
-
38
-
-
34447093423
-
Superoxide anion: oncogenic reactive oxygen species?
-
Pervaiz S., Clement M.V. Superoxide anion: oncogenic reactive oxygen species?. Int. J. Biochem. Cell Biol. 2007, 39:1297-1304.
-
(2007)
Int. J. Biochem. Cell Biol.
, vol.39
, pp. 1297-1304
-
-
Pervaiz, S.1
Clement, M.V.2
-
39
-
-
0036086130
-
Free radicals in the physiological control of cell function
-
Droge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82:47-95.
-
(2002)
Physiol. Rev.
, vol.82
, pp. 47-95
-
-
Droge, W.1
-
40
-
-
0037376674
-
Oxidant signals and oxidative stress
-
Finkel T. Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 2003, 15:247-254.
-
(2003)
Curr. Opin. Cell Biol.
, vol.15
, pp. 247-254
-
-
Finkel, T.1
-
41
-
-
70349472863
-
Developmental biology: a bad boy comes good
-
Theopold U. Developmental biology: a bad boy comes good. Nature 2009, 461:486-487.
-
(2009)
Nature
, vol.461
, pp. 486-487
-
-
Theopold, U.1
-
42
-
-
33947388739
-
Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases
-
Dunand C., et al. Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol. 2007, 174:332-341.
-
(2007)
New Phytol.
, vol.174
, pp. 332-341
-
-
Dunand, C.1
-
43
-
-
78149489254
-
Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root
-
Tsukagoshi H., et al. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 2010, 143:606-616.
-
(2010)
Cell
, vol.143
, pp. 606-616
-
-
Tsukagoshi, H.1
-
45
-
-
33847249555
-
Mitochondrial superoxide mediates heat-induced apoptotic-like death in Leishmania infantum
-
Alzate J.F., et al. Mitochondrial superoxide mediates heat-induced apoptotic-like death in Leishmania infantum. Mol. Biochem. Parasitol. 2007, 152:192-202.
-
(2007)
Mol. Biochem. Parasitol.
, vol.152
, pp. 192-202
-
-
Alzate, J.F.1
-
46
-
-
0034721804
-
Inducible resistance to oxidant stress in the protozoan Leishmania chagasi
-
Miller M.A., et al. Inducible resistance to oxidant stress in the protozoan Leishmania chagasi. J. Biol. Chem. 2000, 275:33883-33889.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 33883-33889
-
-
Miller, M.A.1
-
47
-
-
0028114539
-
Response of Leishmania chagasi promastigotes to oxidant stress
-
Wilson M.E., et al. Response of Leishmania chagasi promastigotes to oxidant stress. Infect. Immun. 1994, 62:5133-5141.
-
(1994)
Infect. Immun.
, vol.62
, pp. 5133-5141
-
-
Wilson, M.E.1
-
48
-
-
0141557631
-
Iron superoxide dismutases targeted to the glycosomes of Leishmania chagasi are important for survival
-
Plewes K.A., et al. Iron superoxide dismutases targeted to the glycosomes of Leishmania chagasi are important for survival. Infect. Immun. 2003, 71:5910-5920.
-
(2003)
Infect. Immun.
, vol.71
, pp. 5910-5920
-
-
Plewes, K.A.1
-
49
-
-
79959343339
-
Leishmania-macrophage interactions: insights into the redox biology
-
Van Assche T., et al. Leishmania-macrophage interactions: insights into the redox biology. Free Radic. Biol. Med. 2011, 51:337-351.
-
(2011)
Free Radic. Biol. Med.
, vol.51
, pp. 337-351
-
-
Van Assche, T.1
-
50
-
-
84875758742
-
Ascorbate peroxidase acts as a novel determiner of redox homeostasis in Leishmania
-
Adak S., Pal S. Ascorbate peroxidase acts as a novel determiner of redox homeostasis in Leishmania. Antioxid. Redox Signal. 2012, 10.1089/ars.2012.4745.
-
(2012)
Antioxid. Redox Signal.
-
-
Adak, S.1
Pal, S.2
-
51
-
-
41049101045
-
Crucial role of cytosolic tryparedoxin peroxidase in Leishmania donovani survival, drug response and virulence
-
Iyer J.P., et al. Crucial role of cytosolic tryparedoxin peroxidase in Leishmania donovani survival, drug response and virulence. Mol. Microbiol. 2008, 68:372-391.
-
(2008)
Mol. Microbiol.
, vol.68
, pp. 372-391
-
-
Iyer, J.P.1
-
52
-
-
77957774915
-
Leishmania subtilisin is a maturase for the trypanothione reductase system and contributes to disease pathology
-
Swenerton R.K., et al. Leishmania subtilisin is a maturase for the trypanothione reductase system and contributes to disease pathology. J. Biol. Chem. 2010, 285:31120-31129.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 31120-31129
-
-
Swenerton, R.K.1
-
53
-
-
78650890352
-
Regulation of autophagy by ROS: physiology and pathology
-
Scherz-Shouval R., Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem. Sci. 2011, 36:30-38.
-
(2011)
Trends Biochem. Sci.
, vol.36
, pp. 30-38
-
-
Scherz-Shouval, R.1
Elazar, Z.2
-
54
-
-
84873295136
-
Distinct roles in autophagy and importance in infectivity of the two ATG4 cysteine peptidases of Leishmania major
-
Williams R.A., et al. Distinct roles in autophagy and importance in infectivity of the two ATG4 cysteine peptidases of Leishmania major. J. Biol. Chem. 2013, 288:3678-3690.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 3678-3690
-
-
Williams, R.A.1
-
55
-
-
84877799176
-
Proteome changes associated with Leishmania donovani promastigote adaptation to oxidative and nitrosative stresses
-
Sardar A.H., et al. Proteome changes associated with Leishmania donovani promastigote adaptation to oxidative and nitrosative stresses. J. Proteomics 2013, 81:185-199.
-
(2013)
J. Proteomics
, vol.81
, pp. 185-199
-
-
Sardar, A.H.1
-
56
-
-
79953298366
-
Iron-containing transcription factors and their roles as sensors
-
Fleischhacker A.S., Kiley P.J. Iron-containing transcription factors and their roles as sensors. Curr. Opin. Chem. Biol. 2011, 15:335-341.
-
(2011)
Curr. Opin. Chem. Biol.
, vol.15
, pp. 335-341
-
-
Fleischhacker, A.S.1
Kiley, P.J.2
-
57
-
-
84864319642
-
Mammalian iron metabolism and its control by iron regulatory proteins
-
Anderson C.P., et al. Mammalian iron metabolism and its control by iron regulatory proteins. Biochim. Biophys. Acta 2012, 1823:1468-1483.
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, pp. 1468-1483
-
-
Anderson, C.P.1
-
58
-
-
0037630432
-
Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation
-
van Weelden S.W., et al. Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation. J. Biol. Chem. 2003, 278:12854-12863.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 12854-12863
-
-
van Weelden, S.W.1
-
59
-
-
45149131789
-
Ancestral roles of eukaryotic frataxin: mitochondrial frataxin function and heterologous expression of hydrogenosomal Trichomonas homologues in trypanosomes
-
Long S., et al. Ancestral roles of eukaryotic frataxin: mitochondrial frataxin function and heterologous expression of hydrogenosomal Trichomonas homologues in trypanosomes. Mol. Microbiol. 2008, 69:94-109.
-
(2008)
Mol. Microbiol.
, vol.69
, pp. 94-109
-
-
Long, S.1
-
60
-
-
51649086651
-
Mitochondrial localization of human frataxin is necessary but processing is not for rescuing frataxin deficiency in Trypanosoma brucei
-
Long S., et al. Mitochondrial localization of human frataxin is necessary but processing is not for rescuing frataxin deficiency in Trypanosoma brucei. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:13468-13473.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 13468-13473
-
-
Long, S.1
-
61
-
-
73449129394
-
Hydrogen peroxide as a cell-survival signaling molecule
-
Groeger G., et al. Hydrogen peroxide as a cell-survival signaling molecule. Antioxid. Redox Signal. 2009, 11:2655-2671.
-
(2009)
Antioxid. Redox Signal.
, vol.11
, pp. 2655-2671
-
-
Groeger, G.1
-
62
-
-
77953947081
-
A novel phosphatase cascade regulates differentiation in Trypanosoma brucei via a glycosomal signaling pathway
-
Szoor B., et al. A novel phosphatase cascade regulates differentiation in Trypanosoma brucei via a glycosomal signaling pathway. Genes Dev. 2010, 24:1306-1316.
-
(2010)
Genes Dev.
, vol.24
, pp. 1306-1316
-
-
Szoor, B.1
-
63
-
-
33845972281
-
Identification and characterization of a protein-tyrosine phosphatase in Leishmania: involvement in virulence
-
Nascimento M., et al. Identification and characterization of a protein-tyrosine phosphatase in Leishmania: involvement in virulence. J. Biol. Chem. 2006, 281:36257-36268.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 36257-36268
-
-
Nascimento, M.1
-
64
-
-
79953876732
-
Calcineurin is required for Leishmania major stress response pathways and for virulence in the mammalian host
-
Naderer T., et al. Calcineurin is required for Leishmania major stress response pathways and for virulence in the mammalian host. Mol. Microbiol. 2011, 80:471-480.
-
(2011)
Mol. Microbiol.
, vol.80
, pp. 471-480
-
-
Naderer, T.1
-
65
-
-
84872554899
-
The role of autophagy in Drosophila metamorphosis
-
Tracy K., Baehrecke E.H. The role of autophagy in Drosophila metamorphosis. Curr. Top. Dev. Biol. 2013, 103:101-125.
-
(2013)
Curr. Top. Dev. Biol.
, vol.103
, pp. 101-125
-
-
Tracy, K.1
Baehrecke, E.H.2
-
66
-
-
84892569830
-
An overview of autophagy: morphology, mechanism and regulation
-
Klionsky D. An overview of autophagy: morphology, mechanism and regulation. Antioxid. Redox Signal. 2013, 10.1089/ars.2013.5371.
-
(2013)
Antioxid. Redox Signal.
-
-
Klionsky, D.1
-
67
-
-
84863674081
-
ATG5 is essential for ATG8-dependent autophagy and mitochondrial homeostasis in Leishmania major
-
Williams R.A., et al. ATG5 is essential for ATG8-dependent autophagy and mitochondrial homeostasis in Leishmania major. PLoS Pathog. 2012, 8:e1002695.
-
(2012)
PLoS Pathog.
, vol.8
-
-
Williams, R.A.1
-
68
-
-
41449083862
-
Turnover of glycosomes during life-cycle differentiation of Trypanosoma brucei
-
Herman M., et al. Turnover of glycosomes during life-cycle differentiation of Trypanosoma brucei. Autophagy 2008, 4:294-308.
-
(2008)
Autophagy
, vol.4
, pp. 294-308
-
-
Herman, M.1
-
69
-
-
84858702537
-
Leishmania donovani mitochondrial iron superoxide dismutase A is released into the cytosol during miltefosine induced programmed cell death
-
Getachew F., Gedamu L. Leishmania donovani mitochondrial iron superoxide dismutase A is released into the cytosol during miltefosine induced programmed cell death. Mol. Biochem. Parasitol. 2012, 183:42-51.
-
(2012)
Mol. Biochem. Parasitol.
, vol.183
, pp. 42-51
-
-
Getachew, F.1
Gedamu, L.2
-
70
-
-
22244440786
-
The Trypanosoma cruzi proteome
-
Atwood J.A., et al. The Trypanosoma cruzi proteome. Science 2005, 309:473-476.
-
(2005)
Science
, vol.309
, pp. 473-476
-
-
Atwood, J.A.1
-
71
-
-
34247107954
-
Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression
-
Piacenza L., et al. Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression. Biochem. J. 2007, 403:323-334.
-
(2007)
Biochem. J.
, vol.403
, pp. 323-334
-
-
Piacenza, L.1
|