메뉴 건너뛰기




Volumn 2013, Issue , 2013, Pages

Recognition of multiple imbalanced cancer types based on DNA microarray data using ensemble classifiers

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CANCER CLASSIFICATION; CLASSIFIER; CONTROLLED STUDY; DATA ANALYSIS; DECISION MAKING; DNA MICROARRAY; GENETIC CODE; HUMAN; MATHEMATICAL PARAMETERS; MOLECULAR RECOGNITION; NEOPLASM; RANDOM SAMPLE; SUPPORT VECTOR MACHINE; TRAINING; ALGORITHM; DATA BASE; GENETICS; STATISTICS;

EID: 84884250664     PISSN: 23146133     EISSN: 23146141     Source Type: Journal    
DOI: 10.1155/2013/239628     Document Type: Article
Times cited : (37)

References (51)
  • 1
    • 84865569505 scopus 로고    scopus 로고
    • Discriminative local subspaces in gene expression data for effective gene function prediction
    • Puelma T., Gutierrez R. A., Soto A., Discriminative local subspaces in gene expression data for effective gene function prediction. Bioinformatics 2012 28 17 2256 2264
    • (2012) Bioinformatics , vol.28 , Issue.17 , pp. 2256-2264
    • Puelma, T.1    Gutierrez, R.A.2    Soto, A.3
  • 3
    • 80053106253 scopus 로고    scopus 로고
    • The role of gene expression profiling in drug discovery
    • 2-s2.0-80053106253 10.1016/j.coph.2011.06.009
    • Bates S., The role of gene expression profiling in drug discovery. Current Opinion in Pharmacology 2011 11 5 549 556 2-s2.0-80053106253 10.1016/j.coph.2011.06.009
    • (2011) Current Opinion in Pharmacology , vol.11 , Issue.5 , pp. 549-556
    • Bates, S.1
  • 4
    • 75149166629 scopus 로고    scopus 로고
    • Reverse engineering gene regulatory network from microarray data using linear time-variant model
    • 2-s2.0-75149166629 10.1186/1471-2105-11-S1-S56, ARTICLE S56
    • Kabir M., Noman N., Iba H., Reverse engineering gene regulatory network from microarray data using linear time-variant model. BMC Bioinformatics 2010 11 1, article S56 2-s2.0-75149166629 10.1186/1471-2105-11-S1-S56
    • (2010) BMC Bioinformatics , vol.11 , Issue.1
    • Kabir, M.1    Noman, N.2    Iba, H.3
  • 5
    • 84860257802 scopus 로고    scopus 로고
    • Interplay between gene expression noise and regulatory network architecture
    • 2-s2.0-84860257802 10.1016/j.tig.2012.01.006
    • Chalancon G., Ravarani C. N. J., Balaji S., Martinez-Arias A., Aravind L., Jothi R., Babu M. M., Interplay between gene expression noise and regulatory network architecture. Trends in Genetics 2012 28 5 221 232 2-s2.0-84860257802 10.1016/j.tig.2012.01.006
    • (2012) Trends in Genetics , vol.28 , Issue.5 , pp. 221-232
    • Chalancon, G.1    Ravarani, C.N.J.2    Balaji, S.3    Martinez-Arias, A.4    Aravind, L.5    Jothi, R.6    Babu, M.M.7
  • 8
    • 80053533738 scopus 로고    scopus 로고
    • Microarray-based cancer prediction using single genes
    • 2-s2.0-80053533738 10.1186/1471-2105-12-391 article 1391
    • Wang X., Simon R., Microarray-based cancer prediction using single genes. BMC Bioinformatics 2011 12, article 391 2-s2.0-80053533738 10.1186/1471-2105- 12-391
    • (2011) BMC Bioinformatics , vol.12
    • Wang, X.1    Simon, R.2
  • 10
    • 33751562237 scopus 로고    scopus 로고
    • Analysis of microarray gene expression data
    • Pham T. D., Wells C., Grane D. I., Analysis of microarray gene expression data. Current Bioinformatics 2006 1 1 37 53
    • (2006) Current Bioinformatics , vol.1 , Issue.1 , pp. 37-53
    • Pham, T.D.1    Wells, C.2    Grane, D.I.3
  • 11
    • 33746677949 scopus 로고    scopus 로고
    • A stable gene selection in microarray data analysis
    • 2-s2.0-33746677949 10.1186/1471-2105-7-228
    • Yang K., Cai Z., Li J., Lin G., A stable gene selection in microarray data analysis. BMC Bioinformatics 2006 7, article 228 2-s2.0-33746677949 10.1186/1471-2105-7-228
    • (2006) BMC Bioinformatics , vol.7228
    • Yang, K.1    Cai, Z.2    Li, J.3    Lin, G.4
  • 14
    • 77957988489 scopus 로고    scopus 로고
    • Class prediction for high-dimensional class-imbalanced data
    • 2-s2.0-77957988489 10.1186/1471-2105-11-523 article 523
    • Blagus R., Lusa L., Class prediction for high-dimensional class-imbalanced data. BMC Bioinformatics 2010 11, article 523 2-s2.0-77957988489 10.1186/1471-2105-11-523
    • (2010) BMC Bioinformatics , vol.11
    • Blagus, R.1    Lusa, L.2
  • 15
    • 77956023732 scopus 로고    scopus 로고
    • Combating the small sample class imbalance problem using feature selection
    • 2-s2.0-77956023732 10.1109/TKDE.2009.187
    • Wasikowski M., Chen X.-W., Combating the small sample class imbalance problem using feature selection. IEEE Transactions on Knowledge and Data Engineering 2010 22 10 1388 1400 2-s2.0-77956023732 10.1109/TKDE.2009.187
    • (2010) IEEE Transactions on Knowledge and Data Engineering , vol.22 , Issue.10 , pp. 1388-1400
    • Wasikowski, M.1    Chen, X.-W.2
  • 16
    • 84868621497 scopus 로고    scopus 로고
    • ACOSampling: An ant colony optimization-based undersampling method for classifying imbalanced DNA microarray data
    • Yu H. L., Ni J., Zhao J., ACOSampling: an ant colony optimization-based undersampling method for classifying imbalanced DNA microarray data. Neurocomputing 2013 101 2 309 318
    • (2013) Neurocomputing , vol.101 , Issue.2 , pp. 309-318
    • Yu, H.L.1    Ni, J.2    Zhao, J.3
  • 17
    • 84872812260 scopus 로고    scopus 로고
    • Class-imbalanced classifiers for high-dimensional data
    • Lin W. J., Chen J. J., Class-imbalanced classifiers for high-dimensional data. Briefings in Bioinformatics 2013 14 1 13 26
    • (2013) Briefings in Bioinformatics , vol.14 , Issue.1 , pp. 13-26
    • Lin, W.J.1    Chen, J.J.2
  • 19
    • 84864153221 scopus 로고    scopus 로고
    • Multiclass imbalance problems: Analysis and potential solutions
    • 2-s2.0-84858380765 10.1109/TSMCB.2012.2187280
    • Wang S., Yao X., Multiclass imbalance problems: analysis and potential solutions. IEEE Transactions on Systems, Man, and Cybernetics B 2012 42 4 1119 1130 2-s2.0-84858380765 10.1109/TSMCB.2012.2187280
    • (2012) IEEE Transactions on Systems, Man, and Cybernetics B , vol.42 , Issue.4 , pp. 1119-1130
    • Wang, S.1    Yao, X.2
  • 20
    • 84864952538 scopus 로고    scopus 로고
    • A novel weighted support vector machine based on particle swarm optimization for gene selection and tumor classification
    • 320698 10.1155/2012/320698
    • Abdi M. J., Hosseini S. M., Rezghi M., A novel weighted support vector machine based on particle swarm optimization for gene selection and tumor classification. Computational and Mathematical Methods in Medicine 2012 2012 7 320698 10.1155/2012/320698
    • (2012) Computational and Mathematical Methods in Medicine , vol.2012 , pp. 7
    • Abdi, M.J.1    Hosseini, S.M.2    Rezghi, M.3
  • 21
    • 72449154589 scopus 로고    scopus 로고
    • A review on the combination of binary classifiers in multiclass problems
    • 2-s2.0-72449154589 10.1007/s10462-009-9114-9
    • Lorena A. C., De Carvalho A. C. P. L. F., Gama J. M. P., A review on the combination of binary classifiers in multiclass problems. Artificial Intelligence Review 2008 30 1-4 19 37 2-s2.0-72449154589 10.1007/s10462-009- 9114-9
    • (2008) Artificial Intelligence Review , vol.30 , Issue.1-4 , pp. 19-37
    • Lorena, A.C.1    De Carvalho, A.C.P.L.F.2    Gama, J.M.P.3
  • 23
    • 31344435874 scopus 로고    scopus 로고
    • Reducing multiclass cancer classification to binary by output coding and SVM
    • 2-s2.0-31344435874 10.1016/j.compbiolchem.2005.10.008
    • Shen L., Tan E. C., Reducing multiclass cancer classification to binary by output coding and SVM. Computational Biology and Chemistry 2006 30 1 63 71 2-s2.0-31344435874 10.1016/j.compbiolchem.2005.10.008
    • (2006) Computational Biology and Chemistry , vol.30 , Issue.1 , pp. 63-71
    • Shen, L.1    Tan, E.C.2
  • 24
    • 77952944675 scopus 로고    scopus 로고
    • Comparison of two output-coding strategies for multi-class tumor classification using gene expression data and latent variable model as binary classifier
    • 2-s2.0-77952944675
    • Joseph S. J., Robbins K. R., Zhang W., Rekaya R., Comparison of two output-coding strategies for multi-class tumor classification using gene expression data and latent variable model as binary classifier. Cancer Informatics 2010 9 39 48 2-s2.0-77952944675
    • (2010) Cancer Informatics , vol.9 , pp. 39-48
    • Joseph, S.J.1    Robbins, K.R.2    Zhang, W.3    Rekaya, R.4
  • 25
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • 2-s2.0-15844413351 10.1093/bioinformatics/bti033
    • Statnikov A., Aliferis C. F., Tsamardinos I., Hardin D., Levy S., A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 2005 21 5 631 643 2-s2.0-15844413351 10.1093/bioinformatics/bti033
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 26
    • 84859743404 scopus 로고    scopus 로고
    • Combining multiple approaches for gene microarray classification
    • 2-s2.0-84859743404 10.1093/bioinformatics/bts108
    • Nanni L., Brahnam S., Lumini A., Combining multiple approaches for gene microarray classification. Bioinformatics 2012 28 8 1151 1157 2-s2.0-84859743404 10.1093/bioinformatics/bts108
    • (2012) Bioinformatics , vol.28 , Issue.8 , pp. 1151-1157
    • Nanni, L.1    Brahnam, S.2    Lumini, A.3
  • 28
    • 50149086080 scopus 로고    scopus 로고
    • A novel ensemble of classifiers for microarray data classification
    • 2-s2.0-50149086080 10.1016/j.asoc.2008.01.006
    • Chen Y., Zhao Y., A novel ensemble of classifiers for microarray data classification. Applied Soft Computing Journal 2008 8 4 1664 1669 2-s2.0-50149086080 10.1016/j.asoc.2008.01.006
    • (2008) Applied Soft Computing Journal , vol.8 , Issue.4 , pp. 1664-1669
    • Chen, Y.1    Zhao, Y.2
  • 29
    • 65349114392 scopus 로고    scopus 로고
    • An evolutionary algorithm approach to optimal ensemble classifiers for DNA microarray data analysis
    • 2-s2.0-65349114392 10.1109/TEVC.2007.906660
    • Kim K.-J., Cho S.-B., An evolutionary algorithm approach to optimal ensemble classifiers for DNA microarray data analysis. IEEE Transactions on Evolutionary Computation 2008 12 3 377 388 2-s2.0-65349114392 10.1109/TEVC.2007.906660
    • (2008) IEEE Transactions on Evolutionary Computation , vol.12 , Issue.3 , pp. 377-388
    • Kim, K.-J.1    Cho, S.-B.2
  • 30
    • 78449268828 scopus 로고    scopus 로고
    • An approach for classification of highly imbalanced data using weighting and undersampling
    • 2-s2.0-78449268828 10.1007/s00726-010-0595-2
    • Anand A., Pugalenthi G., Fogel G. B., Suganthan P. N., An approach for classification of highly imbalanced data using weighting and undersampling. Amino Acids 2010 39 5 1385 1391 2-s2.0-78449268828 10.1007/s00726-010-0595-2
    • (2010) Amino Acids , vol.39 , Issue.5 , pp. 1385-1391
    • Anand, A.1    Pugalenthi, G.2    Fogel, G.B.3    Suganthan, P.N.4
  • 33
    • 84930483738 scopus 로고    scopus 로고
    • Multiclass microarray data classification based on confidence evaluation
    • Yu H. L., Gao S., Qin B., Multiclass microarray data classification based on confidence evaluation. Genetics and Molecular Research 2012 11 2 1357 1369
    • (2012) Genetics and Molecular Research , vol.11 , Issue.2 , pp. 1357-1369
    • Yu, H.L.1    Gao, S.2    Qin, B.3
  • 34
    • 56549128359 scopus 로고    scopus 로고
    • A probabilistic multi-class strategy of one-vs.-rest support vector machines for cancer classification
    • 2-s2.0-56549128359 10.1016/j.neucom.2008.04.033
    • Hong J.-H., Cho S.-B., A probabilistic multi-class strategy of one-vs.-rest support vector machines for cancer classification. Neurocomputing 2008 71 16-18 3275 3281 2-s2.0-56549128359 10.1016/j.neucom.2008.04.033
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3275-3281
    • Hong, J.-H.1    Cho, S.-B.2
  • 36
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • 2-s2.0-0030211964
    • Breiman L., Bagging predictors. Machine Learning 1996 24 2 123 140 2-s2.0-0030211964
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 37
    • 44649197212 scopus 로고    scopus 로고
    • AdaBoost with SVM-based component classifiers
    • 2-s2.0-44649197212 10.1016/j.engappai.2007.07.001
    • Li X., Wang L., Sung E., AdaBoost with SVM-based component classifiers. Engineering Applications of Artificial Intelligence 2008 21 5 785 795 2-s2.0-44649197212 10.1016/j.engappai.2007.07.001
    • (2008) Engineering Applications of Artificial Intelligence , vol.21 , Issue.5 , pp. 785-795
    • Li, X.1    Wang, L.2    Sung, E.3
  • 38
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • 2-s2.0-0032139235 10.1109/34.709601
    • Ho T. K., The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 1998 20 8 832 844 2-s2.0-0032139235 10.1109/34.709601
    • (1998) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 39
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • 2-s2.0-0035478854 10.1023/A:1010933404324
    • Breiman L., Random forests. Machine Learning 2001 45 1 5 32 2-s2.0-0035478854 10.1023/A:1010933404324
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 40
    • 80052951934 scopus 로고    scopus 로고
    • A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems
    • 2-s2.0-80052951934 10.1016/j.neucom.2011.06.010
    • Gao M., Hong X., Chen S., Harris C. J., A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems. Neurocomputing 2011 74 17 3456 3466 2-s2.0-80052951934 10.1016/j.neucom.2011.06.010
    • (2011) Neurocomputing , vol.74 , Issue.17 , pp. 3456-3466
    • Gao, M.1    Hong, X.2    Chen, S.3    Harris, C.J.4
  • 42
    • 84876503003 scopus 로고    scopus 로고
    • Robust multiclass classification for learning from imbalanced biomedical data
    • Phoungphol P., Zhang Y., Zhao Y., Robust multiclass classification for learning from imbalanced biomedical data. Tsinghua Science and Technology 2012 17 6 619 628
    • (2012) Tsinghua Science and Technology , vol.17 , Issue.6 , pp. 619-628
    • Phoungphol, P.1    Zhang, Y.2    Zhao, Y.3
  • 45
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    • Khan J., Wei J. S., Ringnér M., Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 2001 7 6 673 679
    • (2001) Nature Medicine , vol.7 , Issue.6 , pp. 673-679
    • Khan, J.1    Wei, J.S.2    Ringnér, M.3
  • 49
    • 33646515970 scopus 로고    scopus 로고
    • Text categorization with class-based and corpus-based keyword selection
    • 2-s2.0-33646515970
    • Özgür A., Özgür L., Güngör T., Text categorization with class-based and corpus-based keyword selection. Lecture Notes in Computer Science 2005 3733 606 615 2-s2.0-33646515970
    • (2005) Lecture Notes in Computer Science , vol.3733 , pp. 606-615
    • Özgür, A.1    Özgür, L.2    Güngör, T.3
  • 50
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • Japkowicz N., Stephen S., The class imbalance problem: a systematic study. Intelligent Data Analysis 2002 6 5 429 449
    • (2002) Intelligent Data Analysis , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 51
    • 64049108468 scopus 로고    scopus 로고
    • Exploratory undersampling for class-imbalance learning
    • 2-s2.0-64049108468 10.1109/TSMCB.2008.2007853
    • Liu X.-Y., Wu J., Zhou Z.-H., Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics B 2009 39 2 539 550 2-s2.0-64049108468 10.1109/TSMCB.2008.2007853
    • (2009) IEEE Transactions on Systems, Man, and Cybernetics B , vol.39 , Issue.2 , pp. 539-550
    • Liu, X.-Y.1    Wu, J.2    Zhou, Z.-H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.