메뉴 건너뛰기




Volumn 30, Issue 1, 2006, Pages 63-71

Reducing multiclass cancer classification to binary by output coding and SVM

Author keywords

Cancer classification; Microarrays; Multiclass; Output coding; Support vector machine

Indexed keywords

DATA ACQUISITION; DATABASE SYSTEMS; ENCODING (SYMBOLS); GENES;

EID: 31344435874     PISSN: 14769271     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiolchem.2005.10.008     Document Type: Article
Times cited : (17)

References (27)
  • 1
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • E.L. Allwein, R.E. Schapire, and Y. Singer Reducing multiclass to binary: a unifying approach for margin classifiers J. Machine Learn. Res. 1 2000 113 141
    • (2000) J. Machine Learn. Res. , vol.1 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 2
    • 84984932472 scopus 로고    scopus 로고
    • Exploring the new world of the genome with DNA microarrays
    • P.O. Brown, and D. Botstein Exploring the new world of the genome with DNA microarrays Nat. Genet. Suppl. 21 1999 33 37
    • (1999) Nat. Genet. Suppl. , vol.21 , pp. 33-37
    • Brown, P.O.1    Botstein, D.2
  • 3
    • 4043104782 scopus 로고    scopus 로고
    • Machine learning in DNA microarray analysis for cancer classification
    • Yi-Ping Phoebe Chen Adelaide, Australia
    • S.B. Cho, and H.H. Won Machine learning in DNA microarray analysis for cancer classification Yi-Ping Phoebe Chen Proceedings of the First Asia-Pacific Bioinformatics Conference Adelaide, Australia 2003
    • (2003) Proceedings of the First Asia-Pacific Bioinformatics Conference
    • Cho, S.B.1    Won, H.H.2
  • 4
    • 0010442827 scopus 로고    scopus 로고
    • On the learnability and design of output codes for multiclass kernel-based vector machines
    • K. Crammer, and Y. Singer On the learnability and design of output codes for multiclass kernel-based vector machines J. Machine Learn. Res. 2 2001 265 292
    • (2001) J. Machine Learn. Res. , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 5
    • 84984934048 scopus 로고    scopus 로고
    • DNA microarrays in drug discovery and development
    • C. Debouck, and P.N. Goodfellow DNA microarrays in drug discovery and development Nat. Genet. Suppl. 21 1999 48 50
    • (1999) Nat. Genet. Suppl. , vol.21 , pp. 48-50
    • Debouck, C.1    Goodfellow, P.N.2
  • 6
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • T.G. Dietterich, and G. Bakiri Solving multiclass learning problems via error-correcting output codes J. Artific. Intell. Res. 2 1995 263 286
    • (1995) J. Artific. Intell. Res. , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 8
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discriminant methods for the classification of tumors using gene expression data
    • S. Dudoit, J. Fridlyand, and T.P. Speed Comparison of discriminant methods for the classification of tumors using gene expression data J. Am. Stat. Assoc. 97 457 2002 77 87
    • (2002) J. Am. Stat. Assoc. , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene selection for cancer classification using support vector machines Mach. Learn. 46 2002 389 422
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 11
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • T. Hastie, and R. Tibshirani Classification by pairwise coupling Annu. Stat. 26 2 1998 451 471
    • (1998) Annu. Stat. , vol.26 , Issue.2 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 14
    • 0038729565 scopus 로고    scopus 로고
    • Classification of multiple cancer types by multicategory support vector machines using gene expression data
    • Y. Lee, and C.K. Lee Classification of multiple cancer types by multicategory support vector machines using gene expression data Bioinformatics 19 9 2003 1132 1139
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1132-1139
    • Lee, Y.1    Lee, C.K.2
  • 15
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • T. Li, C. Zhang, and M. Ogihara A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression Bioinformatics 20 15 2004 2429 2437
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 17
    • 0036740519 scopus 로고    scopus 로고
    • Multi-class cancer classification via partial least squares with gene expression profiles
    • D.V. Nguyen, and D.M. Rocke Multi-class cancer classification via partial least squares with gene expression profiles Bioinformatics 18 9 2002 1216 1226
    • (2002) Bioinformatics , vol.18 , Issue.9 , pp. 1216-1226
    • Nguyen, D.V.1    Rocke, D.M.2
  • 18
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • MIT Press
    • J. Platt Probabilistic outputs for support vector machines and comparison to regularized likelihood methods Advances in Large Margin Classifiers 1999 MIT Press
    • (1999) Advances in Large Margin Classifiers
    • Platt, J.1
  • 22
    • 22944456563 scopus 로고    scopus 로고
    • Dimension reduction-based penalized logistic regression for cancer classification using microarray data
    • L. Shen, and E.C. Tan Dimension reduction-based penalized logistic regression for cancer classification using microarray data IEEE Trans. Comput. Biol. Bioinform. 2 2005 166 175
    • (2005) IEEE Trans. Comput. Biol. Bioinform. , vol.2 , pp. 166-175
    • Shen, L.1    Tan, E.C.2
  • 23
    • 2942596534 scopus 로고    scopus 로고
    • Ensemble machine learning on gene expression data for cancer classification
    • A.C. Tan, and D. Gilbert Ensemble machine learning on gene expression data for cancer classification Appl. Bioinform. 2 2003 S75 S83
    • (2003) Appl. Bioinform. , vol.2
    • Tan, A.C.1    Gilbert, D.2
  • 25
    • 0012184060 scopus 로고    scopus 로고
    • A survey of partial least squares (PLS) methods, with emphasis on the two-block case
    • Department of Statistics, University of Washington
    • Wegelin, J.A., 2000. A survey of partial least squares (PLS) methods, with emphasis on the two-block case, Technical Report. Department of Statistics, University of Washington.
    • (2000) Technical Report
    • Wegelin, J.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.