메뉴 건너뛰기




Volumn 28, Issue 8, 2012, Pages 1151-1157

Combining multiple approaches for gene microarray classification

Author keywords

[No Author keywords available]

Indexed keywords

AREA UNDER THE CURVE; ARTICLE; DNA MICROARRAY; GENETICS; HUMAN; NEOPLASM; SUPPORT VECTOR MACHINE;

EID: 84859743404     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/bts108     Document Type: Article
Times cited : (48)

References (67)
  • 1
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon, U. et al. (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl Acad. Sci. USA, 96, 6745-6750.
    • (1999) Proc. Natl Acad. Sci. USA , vol.96 , pp. 6745-6750
    • Alon, U.1
  • 2
    • 18544365698 scopus 로고    scopus 로고
    • Gene-expression profiles predict survival of patients with lung adenocarcinoma
    • Beer, D.G. et al. (2002) Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med., 8, 816-823.
    • (2002) Nat. Med. , vol.8 , pp. 816-823
    • Beer, D.G.1
  • 3
    • 0033692876 scopus 로고    scopus 로고
    • Tissue classification with gene expression profiles
    • Ben-Dor, A. et al. (2003) Tissue classification with gene expression profiles. J. Comput. Biol., 7, 559-583.
    • (2003) J. Comput. Biol. , vol.7 , pp. 559-583
    • Ben-Dor, A.1
  • 4
    • 72749111882 scopus 로고    scopus 로고
    • Classification of DNA microarray data with random projection ensembles of polynomial
    • IOS Press, Vietri sul Mare, Italy
    • Bertoni, A. et al. (2009) Classification of DNA microarray data with random projection ensembles of polynomial. In 18th ItalianWorkshop on Neural Networks. IOS Press, Vietri sul Mare, Italy. pp. 60-66.
    • (2009) 18th ItalianWorkshop on Neural Networks , pp. 60-66
    • Bertoni, A.1
  • 5
    • 80052772754 scopus 로고    scopus 로고
    • An ensemble of filters and classifiers for microarray data classification
    • Bolón-Canedo, V. et al. (2012) An ensemble of filters and classifiers for microarray data classification, Pattern Recognit., 45, 531-539.
    • (2012) Pattern Recognit , vol.45 , pp. 531-539
    • Bolón-Canedo, V.1
  • 6
    • 34248330399 scopus 로고    scopus 로고
    • A blocking strategy to improve gene selection for classification of gene expression data
    • Bontempi, G. (2007) A blocking strategy to improve gene selection for classification of gene expression data. IEEE/ACM Trans. Comput. Biol. Biofrom., 4, 293-300.
    • (2007) IEEE/ACM Trans. Comput. Biol. Biofrom. , vol.4 , pp. 293-300
    • Bontempi, G.1
  • 7
    • 8844236882 scopus 로고    scopus 로고
    • A mixture model-based strategy for selecting sets of genes in multiclass response microarray experiments
    • Broet, P. et al. (2004) A mixture model-based strategy for selecting sets of genes in multiclass response microarray experiments. Bioinformatics, 20, 2562-2571.
    • (2004) Bioinformatics , vol.20 , pp. 2562-2571
    • Broet, P.1
  • 8
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data by using support vector machines
    • Brown, M.P. et al. (2000) Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl Acad. Sci. USA, 97, 262-267.
    • (2000) Proc. Natl Acad. Sci. USA , vol.97 , pp. 262-267
    • Brown, M.P.1
  • 9
    • 10244219858 scopus 로고    scopus 로고
    • Assessing genetic information with high-density dna arrays
    • Chee, M. et al. (1996) Assessing genetic information with high-density dna arrays. Science, 274, 610-614.
    • (1996) Science , vol.274 , pp. 610-614
    • Chee, M.1
  • 10
    • 78650685068 scopus 로고    scopus 로고
    • Anovel support vector sampling technique to improve classification accuracy and to identify key genes of leukaemia and prostrate cancer
    • Chen, A.H. and Lin, C.-H. (2011)Anovel support vector sampling technique to improve classification accuracy and to identify key genes of leukaemia and prostrate cancer Expert Syst Appl, 38, 3209-3219.
    • (2011) Expert Syst Appl , vol.38 , pp. 3209-3219
    • Chen, A.H.1    Lin, C.-H.2
  • 11
    • 78149329830 scopus 로고    scopus 로고
    • A sparse learning machine for high-dimensional data with application to microarray gene analysis
    • Cheng, Q. (2010) A sparse learning machine for high-dimensional data with application to microarray gene analysis. IEEE/ACMTrans. Comput. Biol. Biofrom., 7, 636-646.
    • (2010) IEEE/ACMTrans. Comput. Biol. Biofrom. , vol.7 , pp. 636-646
    • Cheng, Q.1
  • 12
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar, J. (2006) Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res., 7, 1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 13
    • 0032417696 scopus 로고    scopus 로고
    • Identification of genes differently regulated by interferon alpha, beta, or gamma using oligonucleotide arrays
    • Der, S.D. et al. (1998) Identification of genes differently regulated by interferon alpha, beta, or gamma using oligonucleotide arrays,. Proc. Natl Acad. Sci. USA, 95, 15623-15628.
    • (1998) Proc. Natl Acad. Sci. USA , vol.95 , pp. 15623-15628
    • Der, S.D.1
  • 15
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit, S. et al. (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc., 97, 77-87.
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 77-87
    • Dudoit, S.1
  • 17
    • 4644313275 scopus 로고    scopus 로고
    • Gene expression profiling of gliomas strongly predicts survival
    • Freije, W.A., et al. (2004) Gene expression profiling of gliomas strongly predicts survival. Cancer Res., 64, 6503-6510.
    • (2004) Cancer Res , vol.64 , pp. 6503-6510
    • Freije, W.A.1
  • 19
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey, T.S. et al. (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics. 16, 906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1
  • 20
    • 79952826133 scopus 로고    scopus 로고
    • Cancer classification from gene expression data by NPPC ensemble
    • Ghorai, S. et al. (2011) Cancer classification from gene expression data by NPPC ensemble. IEEE/ACM Trans. Comput. Biol. Biofrom., 8, 659-671.
    • (2011) IEEE/ACM Trans. Comput. Biol. Biofrom. , vol.8 , pp. 659-671
    • Ghorai, S.1
  • 21
    • 27744565003 scopus 로고    scopus 로고
    • Classification and selection of biomarkers in genomic data using LASSO
    • Ghosh, D. and Chinnaiyan, A.M. (2005) Classification and selection of biomarkers in genomic data using LASSO. J. Biomed. Biotechnol., 2, 147-154.
    • (2005) J. Biomed. Biotechnol. , vol.2 , pp. 147-154
    • Ghosh, D.1    Chinnaiyan, A.M.2
  • 22
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class predition by gene expression monitoring
    • Golub, T.R. et al. (1999) Molecular classification of cancer: class discovery and class predition by gene expression monitoring. Science. 286, 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 23
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • Gordon, G.J. et al. (2002) Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res., 62, 4963-4967.
    • (2002) Cancer Res. , vol.62 , pp. 4963-4967
    • Gordon, G.J.1
  • 24
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I. et al. (2002) Gene selection for cancer classification using support vector machines. Mach. Learn., 46, 389-422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1
  • 26
    • 78649756877 scopus 로고    scopus 로고
    • Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition
    • Hayat, M. and Khan, A. (2011) Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition. J. Theor. Biol., 271, 10-17.
    • (2011) J. Theor. Biol. , vol.271 , pp. 10-17
    • Hayat, M.1    Khan, A.2
  • 28
    • 77955565395 scopus 로고    scopus 로고
    • Decision forest for clssification of gene expression data
    • Huang, J. et al. (2010) Decision forest for clssification of gene expression data. Comput. Biol. Med., 40, 698-704.
    • (2010) Comput. Biol. Med. , vol.40 , pp. 698-704
    • Huang, J.1
  • 29
    • 24144440779 scopus 로고    scopus 로고
    • Gene extraction for cancer diagnosis by support vector machines-an improvement
    • Huang, T.M. and Keoman, V. (2005) Gene extraction for cancer diagnosis by support vector machines-an improvement. Artif. Intel. Med., 40, 185-194.
    • (2005) Artif. Intel. Med. , vol.40 , pp. 185-194
    • Huang, T.M.1    Keoman, V.2
  • 30
    • 77955334667 scopus 로고    scopus 로고
    • A hybrid LDA and genetic algorithm for gene selection and classification of microarray data
    • Huerta, E.B. et al. (2010) A hybrid LDA and genetic algorithm for gene selection and classification of microarray data. Neurocomputing, 73, 2375-2383.
    • (2010) Neurocomputing , vol.73 , pp. 2375-2383
    • Huerta, E.B.1
  • 31
    • 34548547033 scopus 로고    scopus 로고
    • Orthogonal Neighborhood Preserving Projections
    • IEEE Computer Society, New Orleans, LA
    • Kokiopoulou, E. and Saad, Y. (2005) Orthogonal Neighborhood Preserving Projections. IEEE International conference on Data Mining. IEEE Computer Society, New Orleans, LA.
    • (2005) IEEE International conference on Data Mining
    • Kokiopoulou, E.1    Saad, Y.2
  • 32
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo, M. and Sklansky, J. (2000) Comparison of algorithms that select features for pattern classifiers. Pattern Recognit., 33, 25-41.
    • (2000) Pattern Recognit , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 33
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva, L.I. and Whitaker, C.J. (2003) Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn., 51, 181-207.
    • (2003) Mach. Learn. , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 34
    • 10244219943 scopus 로고    scopus 로고
    • Statistical method for identifying diferential gene-gene coexpression patterns
    • Lai, Y. et al. (2004) Statistical method for identifying diferential gene-gene coexpression patterns. Bioinformatics, 20, 3146-3155.
    • (2004) Bioinformatics , vol.20 , pp. 3146-3155
    • Lai, Y.1
  • 35
    • 49249124314 scopus 로고    scopus 로고
    • Investigating the efficiacy of nonlinear dimensionality reduction schemes in classifying gene- and protein-expression studies
    • Lee, G. et al. (2008) Investigating the efficiacy of nonlinear dimensionality reduction schemes in classifying gene- and protein-expression studies. IEEE/ACM Trans. Comput. Biol. Biofrom., 5, 368-384.
    • (2008) IEEE/ACM Trans. Comput. Biol. Biofrom. , vol.5 , pp. 368-384
    • Lee, G.1
  • 36
    • 0038021028 scopus 로고    scopus 로고
    • Acomparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
    • Liu, H. et al. (2002)Acomparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Inform., 13, 51-60.
    • (2002) Genome Inform. , vol.13 , pp. 51-60
    • Liu, H.1
  • 37
    • 58149468839 scopus 로고    scopus 로고
    • Wavelet feature extraction for high dimensional microarray data
    • Liu, Y. (2009) Wavelet feature extraction for high dimensional microarray data. Neurocomputing, 72, 985-990.
    • (2009) Neurocomputing , vol.72 , pp. 985-990
    • Liu, Y.1
  • 38
    • 79959196463 scopus 로고    scopus 로고
    • Methods of forward feature selection based on the aggregation of classifiers generated by single attribute
    • Luo, L. et al. (2011) Methods of forward feature selection based on the aggregation of classifiers generated by single attribute. Comput Biol Med., 41, 435-441.
    • (2011) Comput Biol Med , vol.41 , pp. 435-441
    • Luo, L.1
  • 39
    • 34247535444 scopus 로고    scopus 로고
    • Selection of relevant genes in cancer diagnosis based on their prediction accuracy
    • Maglietta, R. et al. (2007) Selection of relevant genes in cancer diagnosis based on their prediction accuracy. Artif. Intel. Med., 40, 29-44.
    • (2007) Artif. Intel. Med. , vol.40 , pp. 29-44
    • Maglietta, R.1
  • 40
    • 77956617986 scopus 로고    scopus 로고
    • Wavelet selection for disease classification by DNA microarray data
    • Nanni, L. and Lumini, A. (2011) Wavelet selection for disease classification by DNA microarray data. Expert Syst Appl., 38, 990-995.
    • (2011) Expert Syst Appl , vol.38 , pp. 990-995
    • Nanni, L.1    Lumini, A.2
  • 41
    • 77953363893 scopus 로고    scopus 로고
    • Local binary patterns variants as texture descriptors for medical image analysis
    • Nanni, L. et al. (2010) Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intel. Med., 49, 117-125.
    • (2010) Artif. Intel. Med. , vol.49 , pp. 117-125
    • Nanni, L.1
  • 42
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • Ojala, T. et al. (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell., 24, 971-987.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , pp. 971-987
    • Ojala, T.1
  • 43
    • 49049108892 scopus 로고    scopus 로고
    • Blur insensitive texture classification using local phase quantization
    • Springer, Cherbourg-Octeville, France
    • Ojansivu, V. and Heikkila, J. (2008) Blur insensitive texture classification using local phase quantization. In International Conference on Image and Signal Processing. Springer, Cherbourg-Octeville, France, pp. 236-243.
    • (2008) International Conference on Image and Signal Processing , pp. 236-243
    • Ojansivu, V.1    Heikkila, J.2
  • 44
    • 80054968486 scopus 로고    scopus 로고
    • An effective double-bounded tree-connected isomap algorithm for microarray data classification
    • Orsenigo, C. and Vercellis, C. (2011) An effective double-bounded tree-connected isomap algorithm for microarray data classification. Pattern Recognit. Lett., 33, 9-16.
    • (2011) Pattern Recognit. Lett. , vol.33 , pp. 9-16
    • Orsenigo, C.1    Vercellis, C.2
  • 45
    • 77957262309 scopus 로고    scopus 로고
    • Improved direct LDA and its application to DNA microarray gene expression data
    • Paliwal, K.K. and Sharma, A. (2010) Improved direct LDA and its application to DNA microarray gene expression data. Pattern Recognit. Lett., 31, 2489-2492.
    • (2010) Pattern Recognit. Lett. , vol.31 , pp. 2489-2492
    • Paliwal, K.K.1    Sharma, A.2
  • 46
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection on mutual information: criteria of maxdependency, max-relevance, and min-redundancy
    • Peng, H. et al. (2005) Feature selection on mutual information: criteria of maxdependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intel., 27, 1226-1238.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intel. , vol.27 , pp. 1226-1238
    • Peng, H.1
  • 47
    • 33646181069 scopus 로고    scopus 로고
    • A novel ensemble machine learning for robust microarray data classification
    • Peng, Y. (2006) A novel ensemble machine learning for robust microarray data classification. Comput. Biol. Med., 36, 553-573.
    • (2006) Comput. Biol. Med. , vol.36 , pp. 553-573
    • Peng, Y.1
  • 48
    • 0037116832 scopus 로고    scopus 로고
    • Use of proteomic patterns in serum to identify ovarian cancer
    • Petricoin, E.F. et al. (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 359, 572-577.
    • (2002) Lancet , vol.359 , pp. 572-577
    • Petricoin, E.F.1
  • 49
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • Pomeroy, S.L. et al. (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 415, 436-442.
    • (2002) Nature , vol.415 , pp. 436-442
    • Pomeroy, S.L.1
  • 50
    • 80051795952 scopus 로고    scopus 로고
    • A study of performance on microarray data sets for a classifier based on information theoretic learning
    • Porto-Díaz, I. et al. (2011) A study of performance on microarray data sets for a classifier based on information theoretic learning. Neural Netw., 24, 888-896.
    • (2011) Neural Netw , vol.24 , pp. 888-896
    • Porto-Díaz, I.1
  • 51
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • Pudil, P. et al. (1994) Floating search methods in feature selection. Pattern Recognit. Lett., 5, 1119-1125.
    • (1994) Pattern Recognit. Lett. , vol.5 , pp. 1119-1125
    • Pudil, P.1
  • 52
    • 1242263806 scopus 로고    scopus 로고
    • The generalized LASSO
    • Roth, V. (2004) The generalized LASSO. IEEE Trans. Neural Netw., 15, 16-18.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , pp. 16-18
    • Roth, V.1
  • 53
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S. and Saul, L. (2000) Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 54
    • 22944456563 scopus 로고    scopus 로고
    • Dimension reduction-based penalized logistic regression for cancer classification using microarray data
    • Shen, L. and Tan, E.C. (2005) Dimension reduction-based penalized logistic regression for cancer classification using microarray data. IEEE/ACM Trans. Comput. Biol. Biofrom., 2, 166-175.
    • (2005) IEEE/ACM Trans. Comput. Biol. Biofrom. , vol.2 , pp. 166-175
    • Shen, L.1    Tan, E.C.2
  • 55
    • 80053173508 scopus 로고    scopus 로고
    • Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction
    • Shi, P. et al. (2011) Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction. BMC Bioinformatics, 12, 375.
    • (2011) BMC Bioinformatics , vol.12 , pp. 375
    • Shi, P.1
  • 56
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by geneexpression profiling and supervised machine learning
    • Shipp, M.A. et al. (2002) Diffuse large B-cell lymphoma outcome prediction by geneexpression profiling and supervised machine learning. Nat. Med., 8, 68-74.
    • (2002) Nat. Med. , vol.8 , pp. 68-74
    • Shipp, M.A.1
  • 57
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Singh, D. et al. (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 1, 203-209.
    • (2002) Cancer Cell , vol.1 , pp. 203-209
    • Singh, D.1
  • 58
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • Statnikov, A. et al. (2008) A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics, 9, 319.
    • (2008) BMC Bioinformatics , vol.9 , pp. 319
    • Statnikov, A.1
  • 59
    • 77955314518 scopus 로고    scopus 로고
    • Finding optimal classifiers for small feature sets in genomics and protoemics
    • Stiglic, G. et al. (2010) Finding optimal classifiers for small feature sets in genomics and protoemics. Neurocomputing, 73, 2346-2352
    • (2010) Neurocomputing , vol.73 , pp. 2346-2352
    • Stiglic, G.1
  • 60
    • 84855185013 scopus 로고    scopus 로고
    • Protein subcellular localization of fluorescence imagery using spatial and transform domain features
    • doi:10.1093/bioinformatics/btr624
    • Tahir, M. et al. (2011) Protein subcellular localization of fluorescence imagery using spatial and transform domain features. Bioinformatics. doi:10.1093/bioinformatics/btr624
    • (2011) Bioinformatics
    • Tahir, M.1
  • 61
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation
    • Tamayo, P. et al. (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl Acad. Sci. USA, 96, 2907-2912.
    • (1999) Proc. Natl Acad. Sci. USA , vol.96 , pp. 2907-2912
    • Tamayo, P.1
  • 62
    • 2942596534 scopus 로고    scopus 로고
    • Ensemble machine learning on gene expression data for cancer classification
    • Tan, A.C. and Gilbert, D. (2003) Ensemble machine learning on gene expression data for cancer classification. Appl. Bioinformatics, 2, 75-83.
    • (2003) Appl. Bioinformatics , vol.2 , pp. 75-83
    • Tan, A.C.1    Gilbert, D.2
  • 63
    • 0037076272 scopus 로고    scopus 로고
    • Diagnosis of multiple cancer types by shrunken centroids of gene expression
    • Tibshirani, R. et al. (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl Acad. Sci. USA, 99, 6567-6572.
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 6567-6572
    • Tibshirani, R.1
  • 64
    • 2342533421 scopus 로고    scopus 로고
    • Class predition by nearest shrunken centroids, with application to DNA microarrays
    • Tibshirani, R. et al. (2003) Class predition by nearest shrunken centroids, with application to DNA microarrays. Stat. Sci., 18, 104-117.
    • (2003) Stat. Sci. , vol.18 , pp. 104-117
    • Tibshirani, R.1
  • 65
    • 34247200133 scopus 로고    scopus 로고
    • Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarry analysis
    • Turashvilli, G. et al. (2007) Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarry analysis. BMC Cancer, 7, 55.
    • (2007) BMC Cancer , vol.7 , pp. 55
    • Turashvilli, G.1
  • 66
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • van 't Veer, L.J. et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415, 530-536.
    • (2002) Nature , vol.415 , pp. 530-536
    • Van 't Veer, L.J.1
  • 67
    • 21844447839 scopus 로고    scopus 로고
    • Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems
    • Ye, J. (2005) Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. J. Mach. Learn. Res., 6, 483-502.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 483-502
    • Ye, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.