메뉴 건너뛰기




Volumn 99, Issue 6, 2010, Pages 1471-1482

Daily suspended sediment estimation using neuro-wavelet models

Author keywords

Estimation; Neural networks; Neuro wavelet; Suspended sediment load

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DISCHARGE; ESTIMATION METHOD; NUMERICAL MODEL; STREAMFLOW; SUSPENDED SEDIMENT; WAVELET ANALYSIS;

EID: 77955768471     PISSN: 14373254     EISSN: 14373262     Source Type: Journal    
DOI: 10.1007/s00531-009-0460-2     Document Type: Article
Times cited : (32)

References (52)
  • 1
    • 11144345954 scopus 로고    scopus 로고
    • An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition
    • Anctil F, Tape DG (2004) An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition. J Environ Eng Sci 3: S121-S128.
    • (2004) J Environ Eng Sci , vol.3
    • Anctil, F.1    Tape, D.G.2
  • 2
    • 77955774962 scopus 로고    scopus 로고
    • Antunes CM, Oliveira AL (2001) In: Proceedings KDD workshop on temporal data mining, pp 1-13.
  • 3
    • 0002378584 scopus 로고    scopus 로고
    • Wavelet-based feature extraction and decomposition strategies for financial forecasting
    • Aussem A, Campbell J, Murtagh F (1998) Wavelet-based feature extraction and decomposition strategies for financial forecasting. J Comput Intell Finance 6(2): 5-12.
    • (1998) J Comput Intell Finance , vol.6 , Issue.2 , pp. 5-12
    • Aussem, A.1    Campbell, J.2    Murtagh, F.3
  • 4
    • 33846847847 scopus 로고    scopus 로고
    • Monthly dam inflow forecasts using weather forecasting information and neuro-fuzzy technique
    • doi:10.1623/hysj.52.1.99
    • Bae D-H, Jeong DM, Kim G (2007) Monthly dam inflow forecasts using weather forecasting information and neuro-fuzzy technique. Hydrol Sci J 52(1): 99-113. doi: 10. 1623/hysj. 52. 1. 99.
    • (2007) Hydrol Sci J , vol.52 , Issue.1 , pp. 99-113
    • Bae, D.-H.1    Jeong, D.M.2    Kim, G.3
  • 6
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the River Arno
    • doi:10.1623/hysj.48.3.381.45286
    • Campolo M, Soldati A (2003) Artificial neural network approach to flood forecasting in the River Arno. Hydrol Sci J 48(3): 381-398. doi: 10. 1623/hysj. 48. 3. 381. 45286.
    • (2003) Hydrol Sci J , vol.48 , Issue.3 , pp. 381-398
    • Campolo, M.1    Soldati, A.2
  • 7
    • 0035340711 scopus 로고    scopus 로고
    • A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction
    • doi:10.1016/S0022-1694(01)00350-X
    • Chang F-J, Chen Y-C (2001) A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. J Hydrol (Amst) 245: 153-164. doi: 10. 1016/S0022-1694(01)00350-X.
    • (2001) J Hydrol (Amst) , vol.245 , pp. 153-164
    • Chang, F.-J.1    Chen, Y.-C.2
  • 8
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • doi:10.1623/hysj.48.3.349.45288
    • Cigizoglu HK (2003) Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol Sci J 48(3): 349-361. doi: 10. 1623/hysj. 48. 3. 349. 45288.
    • (2003) Hydrol Sci J , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 9
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi layer perceptrons
    • doi:10.1016/j.advwatres.2003.10.003
    • Cigizoglu HK (2004) Estimation and forecasting of daily suspended sediment data by multi layer perceptrons. Adv Water Resour 27: 185-195. doi: 10. 1016/j. advwatres. 2003. 10. 003.
    • (2004) Adv Water Resour , vol.27 , pp. 185-195
    • Cigizoglu, H.K.1
  • 10
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data
    • Cigizoglu HK, Kisi O (2005) Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data. Nord Hydrol 36(1): 49-64.
    • (2005) Nord Hydrol , vol.36 , Issue.1 , pp. 49-64
    • Cigizoglu, H.K.1    Kisi, O.2
  • 11
    • 28944434082 scopus 로고    scopus 로고
    • Methods to improve the neural network performance in suspended sediment estimation
    • doi:10.1016/j.jhydrol.2005.05.019
    • Cigizoglu HK, Kisi O (2006) Methods to improve the neural network performance in suspended sediment estimation. J Hydrol (Amst) 317: 221-238. doi: 10. 1016/j. jhydrol. 2005. 05. 019.
    • (2006) J Hydrol (Amst) , vol.317 , pp. 221-238
    • Cigizoglu, H.K.1    Kisi, O.2
  • 12
    • 47149115136 scopus 로고    scopus 로고
    • Initial assessment of bridge backwater using artificial neural network approach
    • doi:10.1139/L07-142
    • Cobaner M, Seckin G, Kisi O (2008) Initial assessment of bridge backwater using artificial neural network approach. Can J Civ Eng 35(5): 500-510. doi: 10. 1139/L07-142.
    • (2008) Can J Civ Eng , vol.35 , Issue.5 , pp. 500-510
    • Cobaner, M.1    Seckin, G.2    Kisi, O.3
  • 13
    • 2042453329 scopus 로고    scopus 로고
    • Coulibaly P, Burn HD (2004) Wavelet analysis of variability in annual Canadian streamflows. Water Resour Res 40: W03105.
  • 14
    • 0025482241 scopus 로고    scopus 로고
    • Dabuechies I (1990) The wavelet transform, time-frequency localization and signal analysis. IEEE Trans Inf Theory 36(5).
  • 15
    • 20844456071 scopus 로고    scopus 로고
    • Improving generalization of artificial neural networks in rainfall-runoff modelling
    • doi:10.1623/hysj.50.3.439.65025
    • Giustolisi O, Laucelli D (2005) Improving generalization of artificial neural networks in rainfall-runoff modelling. Hydrol Sci J 50(3): 439-457. doi: 10. 1623/hysj. 50. 3. 439. 65025.
    • (2005) Hydrol Sci J , vol.50 , Issue.3 , pp. 439-457
    • Giustolisi, O.1    Laucelli, D.2
  • 16
    • 0035281815 scopus 로고    scopus 로고
    • 2D unit sediment graph theory
    • doi:10.1061/(ASCE)1084-0699(2001)6:2(132)
    • Guldal V, Muftuoglu RF (2001) 2D unit sediment graph theory. J Hydrol Eng 6(2): 132-140. doi: 10. 1061/(ASCE)1084-0699(2001)6: 2(132).
    • (2001) J Hydrol Eng , vol.6 , Issue.2 , pp. 132-140
    • Guldal, V.1    Muftuoglu, R.F.2
  • 17
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquaradt algorithm
    • Hagan MT, Menhaj MB (1994) Training feed forward networks with the Marquaradt algorithm. IEEE Trans Neural Netw 6: 861-867.
    • (1994) IEEE Trans Neural Netw , vol.6 , pp. 861-867
    • Hagan, M.T.1    Menhaj, M.B.2
  • 19
    • 17444385970 scopus 로고    scopus 로고
    • A modified neural network for improving river flow prediction
    • doi:10.1623/hysj.50.2.299.61794
    • Hu TS, Lam KC, Thomas NGS (2005) A modified neural network for improving river flow prediction. Hydrol Sci J 50(2): 299-318. doi: 10. 1623/hysj. 50. 2. 299. 61794.
    • (2005) Hydrol Sci J , vol.50 , Issue.2 , pp. 299-318
    • Hu, T.S.1    Lam, K.C.2    Thomas, N.G.S.3
  • 20
    • 0034746272 scopus 로고    scopus 로고
    • Development of integrated sediment rating curves using ANNs
    • doi:10.1061/(ASCE)0733-9429(2001)127:1(30)
    • Jain SK (2001) Development of integrated sediment rating curves using ANNs. J Hydraul Eng 127(1): 30-37. doi: 10. 1061/(ASCE)0733-9429(2001)127: 1(30).
    • (2001) J Hydraul Eng , vol.127 , Issue.1 , pp. 30-37
    • Jain, S.K.1
  • 21
    • 0033197895 scopus 로고    scopus 로고
    • Application of ANN for reservoir inflow prediction and operation
    • doi:10.1061/(ASCE)0733-9496(1999)125:5(263)
    • Jain SK, Das D, Srivastava DK (1999) Application of ANN for reservoir inflow prediction and operation. J Water Res Plann Manage ASCE 125(5): 263-271. doi: 10. 1061/(ASCE)0733-9496(1999)125: 5(263).
    • (1999) J Water Res Plann Manage ASCE , vol.125 , Issue.5 , pp. 263-271
    • Jain, S.K.1    Das, D.2    Srivastava, D.K.3
  • 22
    • 32544437144 scopus 로고    scopus 로고
    • Determining the structure of a radial basis function network for prediction of nonlinear hydrological time series
    • doi:10.1623/hysj.51.1.21
    • Jayawardena AW, Xu PC, Tsang FL, Li WK (2006) Determining the structure of a radial basis function network for prediction of nonlinear hydrological time series. Hydrol Sci J 51(1): 21-44. doi: 10. 1623/hysj. 51. 1. 21.
    • (2006) Hydrol Sci J , vol.51 , Issue.1 , pp. 21-44
    • Jayawardena, A.W.1    Xu, P.C.2    Tsang, F.L.3    Li, W.K.4
  • 23
    • 44849101740 scopus 로고    scopus 로고
    • Extended daily exchange rates forecasts using wavelet temporal resolutions
    • doi:10.1142/S1793005705000056
    • Kaboudan M (2005) Extended daily exchange rates forecasts using wavelet temporal resolutions. N Math Nat Comput 1(1): 79-107. doi: 10. 1142/S1793005705000056.
    • (2005) N Math Nat Comput , vol.1 , Issue.1 , pp. 79-107
    • Kaboudan, M.1
  • 24
    • 0001938874 scopus 로고
    • Neural network and its application to rainfall-runoff forecasting
    • Kang KW, Park CY, Kim JH (1993) Neural network and its application to rainfall-runoff forecasting. Korean J Hydrosci 4: 1-9.
    • (1993) Korean J Hydrosci , vol.4 , pp. 1-9
    • Kang, K.W.1    Park, C.Y.2    Kim, J.H.3
  • 25
    • 0028667489 scopus 로고
    • Neural networks for river flow prediction
    • doi:10.1061/(ASCE)0887-3801(1994)8:2(201)
    • Karunanithi N, Grenney WJ, Whitley D, Bovee K (1994) Neural networks for river flow prediction. J Comp Civ Eng ASCE 8(2): 201-220. doi: 10. 1061/(ASCE)0887-3801(1994)8: 2(201).
    • (1994) J Comp Civ Eng ASCE , vol.8 , Issue.2 , pp. 201-220
    • Karunanithi, N.1    Grenney, W.J.2    Whitley, D.3    Bovee, K.4
  • 26
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim TW, Valdes JB (2003) Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J Hydrol Eng ASCE 6: 319-328.
    • (2003) J Hydrol Eng ASCE , vol.6 , pp. 319-328
    • Kim, T.W.1    Valdes, J.B.2
  • 27
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • doi:10.1061/(ASCE)1084-0699(2004)9:1(60)
    • Kisi O (2004a) River flow modeling using artificial neural networks. J Hydrol Eng 9(1): 60-63. doi: 10. 1061/(ASCE)1084-0699(2004)9: 1(60).
    • (2004) J Hydrol Eng , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 28
    • 10244249159 scopus 로고    scopus 로고
    • Multi-layer perceptrons with Levenberg-Marquardt optimization algorithm for suspended sediment concentration prediction and estimation
    • doi:10.1623/hysj.49.6.1025.55720
    • Kisi O (2004b) Multi-layer perceptrons with Levenberg-Marquardt optimization algorithm for suspended sediment concentration prediction and estimation. Hydrol Sci J 49(6): 1025-1040. doi: 10. 1623/hysj. 49. 6. 1025. 55720.
    • (2004) Hydrol Sci J , vol.49 , Issue.6 , pp. 1025-1040
    • Kisi, O.1
  • 29
    • 12544259920 scopus 로고    scopus 로고
    • Daily river flow forecasting using artificial neural networks and auto-regressive models
    • Kisi O (2005a) Daily river flow forecasting using artificial neural networks and auto-regressive models. Turk J Eng Environ Sci 29: 9-20.
    • (2005) Turk J Eng Environ Sci , vol.29 , pp. 9-20
    • Kisi, O.1
  • 30
    • 23044459648 scopus 로고    scopus 로고
    • Suspended sediment estimation using neuro-fuzzy and neural network approaches
    • doi:10.1623/hysj.2005.50.4.683
    • Kisi O (2005b) Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrol Sci J 50(4): 683-696. doi: 10. 1623/hysj. 2005. 50. 4. 683.
    • (2005) Hydrol Sci J , vol.50 , Issue.4 , pp. 683-696
    • Kisi, O.1
  • 31
    • 34548425056 scopus 로고    scopus 로고
    • Kisi O, Cigizoglu HK (2007) Comparison of different ANN techniques in river flow prediction. Civ Eng Environ Syst 24(3): 211-231.
  • 32
    • 0031593131 scopus 로고    scopus 로고
    • Estimation of temporal variation of sediment yield from small catchments through the kinematic method
    • doi:10.1016/S0022-1694(97)00084-X
    • Kothyari UC, Tiwari AK, Singh R (1997) Estimation of temporal variation of sediment yield from small catchments through the kinematic method. J Hydrol (Amst) 203: 39-57. doi: 10. 1016/S0022-1694(97)00084-X.
    • (1997) J Hydrol (Amst) , vol.203 , pp. 39-57
    • Kothyari, U.C.1    Tiwari, A.K.2    Singh, R.3
  • 33
    • 33751581359 scopus 로고    scopus 로고
    • Wavelet regression techniques for streamflow predictions
    • doi:10.1080/02664760600744298
    • Kucuk M, Agiralioglu N (2006) Wavelet regression techniques for streamflow predictions. J Appl Stat 33(9): 943-960. doi: 10. 1080/02664760600744298.
    • (2006) J Appl Stat , vol.33 , Issue.9 , pp. 943-960
    • Kucuk, M.1    Agiralioglu, N.2
  • 34
    • 77955776217 scopus 로고    scopus 로고
    • Ma PY (2006) A fresh engineering approach for the forecast of financial index volatility and hedging strategies, PhD Thesis, Quebec University, Montreal, Canada.
  • 36
    • 0024700097 scopus 로고
    • A theory for multi resolution signal decomposition: The wavelet representation
    • doi:10.1109/34.192463
    • Mallat SG (1989) A theory for multi resolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7): 674-693. doi: 10. 1109/34. 192463.
    • (1989) IEEE Trans Pattern Anal Mach Intell , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 37
    • 0023962844 scopus 로고
    • Uncertainty in suspended sediment transport curves
    • doi:10.1061/(ASCE)0733-9429(1988)114:1(63)
    • McBean EA, Al-Nassri S (1988) Uncertainty in suspended sediment transport curves. J Hydrol Eng 114(1): 63-74. doi: 10. 1061/(ASCE)0733-9429(1988)114: 1(63).
    • (1988) J Hydrol Eng , vol.114 , Issue.1 , pp. 63-74
    • McBean, E.A.1    Al-Nassri, S.2
  • 38
    • 33751399443 scopus 로고    scopus 로고
    • Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey)
    • Partal T, Kucuk M (2006) Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey). Phys Chem Earth 31: 1189-1200.
    • (2006) Phys Chem Earth , vol.31 , pp. 1189-1200
    • Partal, T.1    Kucuk, M.2
  • 39
    • 0030616293 scopus 로고    scopus 로고
    • Parameterisation, calibration and validation of distributed hydrological models
    • doi:10.1016/S0022-1694(96)03329-X
    • Refsgaard JC (1997) Parameterisation, calibration and validation of distributed hydrological models. J Hydrol (Amst) 198: 69-97. doi: 10. 1016/S0022-1694(96)03329-X.
    • (1997) J Hydrol (Amst) , vol.198 , pp. 69-97
    • Refsgaard, J.C.1
  • 40
    • 0029663691 scopus 로고    scopus 로고
    • Fuzzy learning decomposition for the scheduling of hydroelectric power systems
    • doi:10.1029/95WR02971
    • Saad M, Bigras P, Turgeon A, Duquette R (1996) Fuzzy learning decomposition for the scheduling of hydroelectric power systems. Water Resour Res 32(1): 179-186. doi: 10. 1029/95WR02971.
    • (1996) Water Resour Res , vol.32 , Issue.1 , pp. 179-186
    • Saad, M.1    Bigras, P.2    Turgeon, A.3    Duquette, R.4
  • 41
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • doi:10.1016/S0022-1694(96)03330-6
    • Shamseldin AY (1997) Application of a neural network technique to rainfall-runoff modelling. J Hydrol (Amst) 199: 272-294. doi: 10. 1016/S0022-1694(96)03330-6.
    • (1997) J Hydrol (Amst) , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 42
    • 77955770295 scopus 로고    scopus 로고
    • Smith M (1996) Neural networks for statistical modeling. International Thomson Computer Press, Boston, ISBN 1-850-32842-0.
  • 43
    • 0032003006 scopus 로고    scopus 로고
    • Stream flow characterization and feature detection using a discrete wavelet transform
    • Smith LC, Turcotte DL, Isacks B (1998) Stream flow characterization and feature detection using a discrete wavelet transform. Hydrol Process 12: 233-249.
    • (1998) Hydrol Process , vol.12 , pp. 233-249
    • Smith, L.C.1    Turcotte, D.L.2    Isacks, B.3
  • 44
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall-runoff modelling
    • doi:10.1623/hysj.48.3.399.45291
    • Solomatine DP, Dulal KN (2003) Model trees as an alternative to neural networks in rainfall-runoff modelling. Hydrol Sci J 48(3): 399-411. doi: 10. 1623/hysj. 48. 3. 399. 45291.
    • (2003) Hydrol Sci J , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 45
    • 0036843660 scopus 로고    scopus 로고
    • Modelling evaporation using an artificial neural network algorithm
    • doi:10.1002/hyp.1096
    • Sudheer KP, Gosain AK, Rangan DM, Saheb SM (2002) Modelling evaporation using an artificial neural network algorithm. Hydrol Process 16: 3189-3202. doi: 10. 1002/hyp. 1096.
    • (2002) Hydrol Process , vol.16 , pp. 3189-3202
    • Sudheer, K.P.1    Gosain, A.K.2    Rangan, D.M.3    Saheb, S.M.4
  • 46
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur G (2002) Artificial neural networks for sheet sediment transport. Hydrol Sci J 47(6): 879-892.
    • (2002) Hydrol Sci J , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 47
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • doi:10.1061/(ASCE)1084-0699(1999)4:3(232)
    • Tokar AS, Johnson PA (1999) Rainfall-runoff modeling using artificial neural networks. J Hydrol Eng 4(3): 232-239. doi: 10. 1061/(ASCE)1084-0699(1999)4: 3(232).
    • (1999) J Hydrol Eng , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 48
    • 1542680533 scopus 로고    scopus 로고
    • A practical guide to wavelet analysis
    • doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
    • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1): 61-78. doi: 10. 1175/1520-0477(1998)079< 0061: APGTWA> 2. 0. CO; 2.
    • (1998) Bull Am Meteorol Soc , vol.79 , Issue.1 , pp. 61-78
    • Torrence, C.1    Compo, G.P.2
  • 49
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of the hydrology
    • Wang W, Ding J (2003) Wavelet network model and its application to the prediction of the hydrology. Nat Sci 1(1): 67-71.
    • (2003) Nat Sci , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.1    Ding, J.2
  • 50
    • 0030074908 scopus 로고    scopus 로고
    • SHESED: A physically based, distributed erosion and sediment yield component for the SHE hydrological modeling system
    • doi:10.1016/S0022-1694(96)80012-6
    • Wicks JM, Bathurst JC (1996) SHESED: a physically based, distributed erosion and sediment yield component for the SHE hydrological modeling system. J Hydrol 175: 213-238. doi: 10. 1016/S0022-1694(96)80012-6.
    • (1996) J Hydrol , vol.175 , pp. 213-238
    • Wicks, J.M.1    Bathurst, J.C.2
  • 51
    • 0035964832 scopus 로고    scopus 로고
    • An adaptive neural-wavelet model for short term load forecasting
    • doi:10.1016/S0378-7796(01)00138-9
    • Zhang BL, Dong ZY (2001) An adaptive neural-wavelet model for short term load forecasting. Electric Power Syst Res 59: 121-129. doi: 10. 1016/S0378-7796(01)00138-9.
    • (2001) Electric Power Syst Res , vol.59 , pp. 121-129
    • Zhang, B.L.1    Dong, Z.Y.2
  • 52
    • 0033896533 scopus 로고    scopus 로고
    • A hybrid wavelet-Kalman filter method for load forecasting
    • doi:10.1016/S0378-7796(99)00063-2
    • Zheng T, Girgis AA, Makram EB (2000) A hybrid wavelet-Kalman filter method for load forecasting. Electric Power Syst Res 54: 11-17. doi: 10. 1016/S0378-7796(99)00063-2.
    • (2000) Electric Power Syst Res , vol.54 , pp. 11-17
    • Zheng, T.1    Girgis, A.A.2    Makram, E.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.