메뉴 건너뛰기




Volumn 16, Issue 9, 2013, Pages 1170-1178

Probabilistic brains: Knowns and unknowns

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN FUNCTION; COGNITION; DECISION MAKING; HUMAN; INTUITION; LEARNING; NERVE CELL NETWORK; NONHUMAN; PRIORITY JOURNAL; PROBABILITY; REVIEW; STATISTICAL MODEL; STIMULUS RESPONSE;

EID: 84883460930     PISSN: 10976256     EISSN: 15461726     Source Type: Journal    
DOI: 10.1038/nn.3495     Document Type: Review
Times cited : (477)

References (93)
  • 1
    • 0042389662 scopus 로고    scopus 로고
    • Constructing a logic of plausible inference: A guide to Cox's theorem
    • Van Horn, K.S. Constructing a logic of plausible inference: a guide to Cox's theorem. Int. J. Approx. Reason. 34, 3-24 (2003).
    • (2003) Int. J. Approx. Reason. , vol.34 , pp. 3-24
    • Van Horn, K.S.1
  • 3
    • 0001185873 scopus 로고
    • An essay towards solving a problem in the doctrine of chances
    • Bayes, T. An essay towards solving a problem in the doctrine of chances. Philos. Trans. R. Soc. Lond. 53, 370-418 (1763).
    • (1763) Philos. Trans. R. Soc. Lond. , vol.53 , pp. 370-418
    • Bayes, T.1
  • 5
    • 0000137831 scopus 로고
    • Stigler's law of eponymy
    • Stigler, S.M. Stigler's law of eponymy. Trans. N. Y. Acad. Sci. 39, 147-158 (1980).
    • (1980) Trans. N. Y. Acad. Sci. , vol.39 , pp. 147-158
    • Stigler, S.M.1
  • 7
    • 0039781332 scopus 로고
    • Versuch einer erweiterten Anwendung des Fechnerschen Gesetzes im Farbensystem
    • Helmholtz, H.v. Versuch einer erweiterten Anwendung des Fechnerschen Gesetzes im Farbensystem. Z. Psychol. Physiol. Sinnesorgane 2, 1-30 (1891).
    • (1891) Z. Psychol. Physiol. Sinnesorgane , vol.2 , pp. 1-30
    • Helmholtz . H, V.1
  • 9
    • 0033017590 scopus 로고    scopus 로고
    • Integration of proprioceptive and visual position-information: An experimentally supported model
    • van Beers, R.J., Sittig, A.C. & Gon, J.J. Integration of proprioceptive and visual position-information: an experimentally supported model. J. Neurophysiol. 81, 1355-1364 (1999).
    • (1999) J. Neurophysiol. , vol.81 , pp. 1355-1364
    • Van Beers, R.J.1    Sittig, A.C.2    Gon, J.J.3
  • 10
    • 0032103354 scopus 로고    scopus 로고
    • Surface orientation from texture: Ideal observers, generic observers and the information content of texture cues
    • Knill, D.C. Surface orientation from texture: ideal observers, generic observers and the information content of texture cues. Vision Res. 38, 1655-1682 (1998).
    • (1998) Vision Res. , vol.38 , pp. 1655-1682
    • Knill, D.C.1
  • 11
    • 0037165165 scopus 로고    scopus 로고
    • Humans integrate visual and haptic information in a statistically optimal fashion
    • Ernst, M.O. & Banks, M.S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429-433 (2002).
    • (2002) Nature , vol.415 , pp. 429-433
    • Ernst, M.O.1    Banks, M.S.2
  • 12
    • 0032791091 scopus 로고    scopus 로고
    • Optimal integration of texture and motion cues to depth
    • Jacobs, R.A. Optimal integration of texture and motion cues to depth. Vision Res. 117, 3621-3629 (1999).
    • (1999) Vision Res. , vol.117 , pp. 3621-3629
    • Jacobs, R.A.1
  • 13
    • 0028799979 scopus 로고
    • An internal model for sensorimotor integration
    • Wolpert, D.M., Ghahramani, Z. & Jordan, M. An internal model for sensorimotor integration. Science 269, 1880-1882 (1995).
    • (1995) Science , vol.269 , pp. 1880-1882
    • Wolpert, D.M.1    Ghahramani, Z.2    Jordan, M.3
  • 14
    • 4344685154 scopus 로고    scopus 로고
    • Optimality principles in sensorimotor control
    • Todorov, E. Optimality principles in sensorimotor control. Nat. Neurosci. 7, 907-915 (2004).
    • (2004) Nat. Neurosci. , vol.7 , pp. 907-915
    • Todorov, E.1
  • 15
    • 1642553405 scopus 로고    scopus 로고
    • Bayesian integration in sensorimotor learning
    • Körding, K.P. & Wolpert, D.M. Bayesian integration in sensorimotor learning. Nature 427, 244-247 (2004).
    • (2004) Nature , vol.427 , pp. 244-247
    • Körding, K.P.1    Wolpert, D.M.2
  • 16
    • 33746263998 scopus 로고    scopus 로고
    • Probabilistic models of cognition: Conceptual foundations
    • Chater, N., Tenenbaum, J.B. & Yuille, A. Probabilistic models of cognition: conceptual foundations. Trends Cogn. Sci. 10, 287-291 (2006).
    • (2006) Trends Cogn. Sci. , vol.10 , pp. 287-291
    • Chater, N.1    Tenenbaum, J.B.2    Yuille, A.3
  • 17
    • 0742271426 scopus 로고    scopus 로고
    • A theory of causal learning in children: Causal maps and Bayes nets
    • Gopnik, A. et al. A theory of causal learning in children: causal maps and Bayes nets. Psychol. Rev. 111, 3-32 (2004).
    • (2004) Psychol. Rev. , vol.111 , pp. 3-32
    • Gopnik, A.1
  • 18
    • 33746260413 scopus 로고    scopus 로고
    • Theory-based Bayesian models of inductive learning and reasoning
    • Tenenbaum, J.B., Griffiths, T.L. & Kemp, C. Theory-based Bayesian models of inductive learning and reasoning. Trends Cogn. Sci. 10, 309-318 (2006).
    • (2006) Trends Cogn. Sci. , vol.10 , pp. 309-318
    • Tenenbaum, J.B.1    Griffiths, T.L.2    Kemp, C.3
  • 20
    • 33746264001 scopus 로고    scopus 로고
    • Probabilistic inference in human semantic memory
    • Steyvers, M., Griffiths, T.L. & Dennis, S. Probabilistic inference in human semantic memory. Trends Cogn. Sci. 10, 327-334 (2006).
    • (2006) Trends Cogn. Sci. , vol.10 , pp. 327-334
    • Steyvers, M.1    Griffiths, T.L.2    Dennis, S.3
  • 21
    • 0030117215 scopus 로고    scopus 로고
    • A probabilistic model of lexical and syntactic access and disambiguation
    • Jurafsky, D. A probabilistic model of lexical and syntactic access and disambiguation. Cogn. Sci. 20, 137-194 (1996).
    • (1996) Cogn. Sci. , vol.20 , pp. 137-194
    • Jurafsky, D.1
  • 22
    • 56549096917 scopus 로고    scopus 로고
    • Speakers optimize information density through syntactic reduction
    • eds. Schlökopf, B., Platt, J.C. & Hofmann, T., MIT Press
    • Levy, R. & Jaeger, T.F. Speakers optimize information density through syntactic reduction. in Advances in Neural Information Processing Systems (eds. Schlökopf, B., Platt, J.C. & Hofmann, T.) 849-856 (MIT Press, 2007).
    • (2007) Advances in Neural Information Processing Systems , pp. 849-856
    • Levy, R.1    Jaeger, T.F.2
  • 23
    • 79952512265 scopus 로고    scopus 로고
    • How to grow a mind: Statistics, structure and abstraction
    • Tenenbaum, J.B., Kemp, C., Griffiths, T.L. & Goodman, N.D. How to grow a mind: statistics, structure and abstraction. Science 331, 1279-1285 (2011).
    • (2011) Science , vol.331 , pp. 1279-1285
    • Tenenbaum, J.B.1    Kemp, C.2    Griffiths, T.L.3    Goodman, N.D.4
  • 24
    • 0029742021 scopus 로고    scopus 로고
    • How humans combine simultaneous proprioceptive and visual position information
    • van Beers, R.J., Sittig, A.C. & Denier van der Gon, J.J. How humans combine simultaneous proprioceptive and visual position information. Exp. Brain Res. 111, 253-261 (1996).
    • (1996) Exp. Brain Res. , vol.111 , pp. 253-261
    • Van Beers, R.J.1    Sittig, A.C.2    Van Der Gon Denier, J.J.3
  • 25
    • 1242288384 scopus 로고    scopus 로고
    • The ventriloquist effect results from near-optimal bimodal integration
    • Alais, D. & Burr, D. The ventriloquist effect results from near-optimal bimodal integration. Curr. Biol. 14, 257-262 (2004).
    • (2004) Curr. Biol. , vol.14 , pp. 257-262
    • Alais, D.1    Burr, D.2
  • 26
    • 0039052586 scopus 로고    scopus 로고
    • Modeling response times for two-choice decisions
    • Ratcliff, R. & Rouder, J.N. Modeling response times for two-choice decisions. Psychol. Sci. 9, 347-356 (1998).
    • (1998) Psychol. Sci. , vol.9 , pp. 347-356
    • Ratcliff, R.1    Rouder, J.N.2
  • 27
    • 0142219854 scopus 로고    scopus 로고
    • A role for neural integrators in perceptual decision making
    • Mazurek, M.E., Roitman, J.D., Ditterich, J. & Shadlen, M.N. A role for neural integrators in perceptual decision making. Cereb. Cortex 13, 1257-1269 (2003).
    • (2003) Cereb. Cortex , vol.13 , pp. 1257-1269
    • Mazurek, M.E.1    Roitman, J.D.2    Ditterich, J.3    Shadlen, M.N.4
  • 28
    • 77957264374 scopus 로고    scopus 로고
    • Visual fixations and the computation and comparison of value in simple choice
    • Krajbich, I., Armel, C. & Rangel, A. Visual fixations and the computation and comparison of value in simple choice. Nat. Neurosci. 13, 1292-1298 (2010).
    • (2010) Nat. Neurosci. , vol.13 , pp. 1292-1298
    • Krajbich, I.1    Armel, C.2    Rangel, A.3
  • 29
    • 84862024986 scopus 로고    scopus 로고
    • Optimal control as a graphical model inference problem
    • Kappen, H.J., Gómez, V. & Opper, M. Optimal control as a graphical model inference problem. Mach. Learn. 87, 159-182 (2012).
    • (2012) Mach. Learn. , vol.87 , pp. 159-182
    • Kappen, H.J.1    Gómez, V.2    Opper, M.3
  • 30
  • 31
    • 0014686494 scopus 로고
    • Pattern recognition and the responses of sensory neurons
    • Barlow, H.B. Pattern recognition and the responses of sensory neurons. Ann. NY Acad. Sci. 156, 872-881 (1969).
    • (1969) Ann. NY Acad. Sci. , vol.156 , pp. 872-881
    • Barlow, H.B.1
  • 32
    • 0032611278 scopus 로고    scopus 로고
    • Bayesian inference in populations of cortical neurons: A model of motion integration and segmentation in area MT
    • Koechlin, E., Anton, J.L. & Burnod, Y. Bayesian inference in populations of cortical neurons: a model of motion integration and segmentation in area MT. Biol. Cybern. 80, 25-44 (1999).
    • (1999) Biol. Cybern. , vol.80 , pp. 25-44
    • Koechlin, E.1    Anton, J.L.2    Burnod, Y.3
  • 33
    • 0034182895 scopus 로고    scopus 로고
    • Using Bayes' rule to model multisensory enhancement in the superior colliculus
    • Anastasio, T.J., Patton, P.E. & Belkacem-Boussaid, K. Using Bayes' rule to model multisensory enhancement in the superior colliculus. Neural Comput. 12, 1165-1187 (2000).
    • (2000) Neural Comput. , vol.12 , pp. 1165-1187
    • Anastasio, T.J.1    Patton, P.E.2    Belkacem-Boussaid, K.3
  • 34
    • 84898960665 scopus 로고    scopus 로고
    • Interpreting neural response variability as Monte Carlo sampling of the posterior
    • eds. Becker, S., Thrun, S. & Obermayer, K., MIT Press
    • Hoyer, P.O. & Hyvarinen, A. Interpreting neural response variability as Monte Carlo sampling of the posterior. in Neural Informatoin Processing Systems (eds. Becker, S., Thrun, S. & Obermayer, K.) 293-300 (MIT Press, 2003).
    • (2003) Neural Informatoin Processing Systems , pp. 293-300
    • Hoyer, P.O.1    Hyvarinen, A.2
  • 35
    • 24044497251 scopus 로고    scopus 로고
    • Evolution of the cerebellum as a neuronal machine for Bayesian state estimation
    • Paulin, M.G. Evolution of the cerebellum as a neuronal machine for Bayesian state estimation. J. Neural Eng. 2, S219-S234 (2005).
    • (2005) J. Neural Eng. , vol.2
    • Paulin, M.G.1
  • 36
  • 37
    • 70449439928 scopus 로고    scopus 로고
    • Input feedback networks: Classification and inference based on network structure
    • Achler, T. & Amir, E. Input feedback networks: classification and inference based on network structure. Proc. Artificial General Intelligence 1, 15-26 (2008).
    • (2008) Proc. Artificial General Intelligence , vol.1 , pp. 15-26
    • Achler, T.1    Amir, E.2
  • 38
    • 0347527070 scopus 로고    scopus 로고
    • Bayesian computation in recurrent neural circuits
    • Rao, R.P. Bayesian computation in recurrent neural circuits. Neural Comput. 16, 1-38 (2004).
    • (2004) Neural Comput. , vol.16 , pp. 1-38
    • Rao, R.P.1
  • 39
    • 33745758495 scopus 로고    scopus 로고
    • Optimal representation of sensory information by neural populations
    • Jazayeri, M. & Movshon, J.A. Optimal representation of sensory information by neural populations. Nat. Neurosci. 9, 690-696 (2006).
    • (2006) Nat. Neurosci. , vol.9 , pp. 690-696
    • Jazayeri, M.1    Movshon, J.A.2
  • 40
    • 34250633136 scopus 로고    scopus 로고
    • Optimal sensorimotor integration in recurrent cortical networks: A neural implementation of Kalman filters
    • Denéve, S., Duhamel, J.R. & Pouget, A. Optimal sensorimotor integration in recurrent cortical networks: a neural implementation of Kalman filters. J. Neurosci. 27, 5744-5756 (2007).
    • (2007) J. Neurosci. , vol.27 , pp. 5744-5756
    • Denéve, S.1    Duhamel, J.R.2    Pouget, A.3
  • 41
    • 34247875892 scopus 로고    scopus 로고
    • Exact inferences in a neural implementation of a hidden Markov model
    • Beck, J.M. & Pouget, A. Exact inferences in a neural implementation of a hidden Markov model. Neural Comput. 19, 1344-1361 (2007).
    • (2007) Neural Comput. , vol.19 , pp. 1344-1361
    • Beck, J.M.1    Pouget, A.2
  • 42
    • 33847145317 scopus 로고    scopus 로고
    • The basal ganglia and cortex implement optimal decision making between alternative actions
    • Bogacz, R. & Gurney, K. The basal ganglia and cortex implement optimal decision making between alternative actions. Neural Comput. 19, 442-477 (2007).
    • (2007) Neural Comput. , vol.19 , pp. 442-477
    • Bogacz, R.1    Gurney, K.2
  • 43
    • 0035155538 scopus 로고    scopus 로고
    • Neural computations that underlie decisions about sensory stimuli
    • Gold, J.I. & Shadlen, M.N. Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5, 10-16 (2001).
    • (2001) Trends Cogn. Sci. , vol.5 , pp. 10-16
    • Gold, J.I.1    Shadlen, M.N.2
  • 44
    • 0006300302 scopus 로고
    • Neurobiological computational systems
    • eds. Marks, R.J., Zurada, J.M. & Robinson, C.J., IEEE Press, New York
    • Anderson, C. Neurobiological computational systems. in Computational Intelligence: Imitating Life (eds. Marks, R.J., Zurada, J.M. & Robinson, C.J.) 213-222 (IEEE Press, New York, 1994).
    • (1994) Computational Intelligence: Imitating Life , pp. 213-222
    • Anderson, C.1
  • 45
    • 0032519055 scopus 로고    scopus 로고
    • Probabilistic interpretation of population code
    • Zemel, R.S., Dayan, P. & Pouget, A. Probabilistic interpretation of population code. Neural Comput. 10, 403-430 (1998).
    • (1998) Neural Comput. , vol.10 , pp. 403-430
    • Zemel, R.S.1    Dayan, P.2    Pouget, A.3
  • 47
    • 33750437292 scopus 로고    scopus 로고
    • Bayesian inference with probabilistic population codes
    • Ma, W.J., Beck, J.M., Latham, P.E. & Pouget, A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432-1438 (2006).
    • (2006) Nat. Neurosci. , vol.9 , pp. 1432-1438
    • Ma, W.J.1    Beck, J.M.2    Latham, P.E.3    Pouget, A.4
  • 49
    • 0029992583 scopus 로고    scopus 로고
    • Probability density estimation for the interpretation of neural population codes
    • Sanger, T.D. Probability density estimation for the interpretation of neural population codes. J. Neurophysiol. 76, 2790-2793 (1996).
    • (1996) J. Neurophysiol. , vol.76 , pp. 2790-2793
    • Sanger, T.D.1
  • 50
    • 0002657234 scopus 로고
    • The 'ideal homunculus': Statistical inference from neural population responses
    • eds. Eeckman, F. & Bower, J., Kluwer Academic Publishers, Norwell, Massachusetts, USA
    • Foldiak, P. The 'ideal homunculus': statistical inference from neural population responses. in Computation and Neural Systems (eds. Eeckman, F. & Bower, J.) 55-60 (Kluwer Academic Publishers, Norwell, Massachusetts, USA, 1993).
    • (1993) Computation and Neural Systems , pp. 55-60
    • Foldiak, P.1
  • 51
    • 79251595755 scopus 로고    scopus 로고
    • Decoding the activity of neuronal populations in macaque primary visual cortex
    • Graf, A.B., Kohn, A., Jazayeri, M. & Movshon, J.A. Decoding the activity of neuronal populations in macaque primary visual cortex. Nat. Neurosci. 14, 239-245 (2011).
    • (2011) Nat. Neurosci. , vol.14 , pp. 239-245
    • Graf, A.B.1    Kohn, A.2    Jazayeri, M.3    Movshon, J.A.4
  • 52
    • 84864426631 scopus 로고    scopus 로고
    • A fast and simple population code for orientation in primate V1
    • Berens, P. et al. A fast and simple population code for orientation in primate V1. J. Neurosci. 32, 10618-10626 (2012).
    • (2012) J. Neurosci. , vol.32 , pp. 10618-10626
    • Berens, P.1
  • 53
    • 76749113376 scopus 로고    scopus 로고
    • Statistically optimal perception and learning: From behavior to neural representations
    • Fiser, J., Berkes, P., Orban, G. & Lengyel, M. Statistically optimal perception and learning: from behavior to neural representations. Trends Cogn. Sci. 14, 119-130 (2010).
    • (2010) Trends Cogn. Sci. , vol.14 , pp. 119-130
    • Fiser, J.1    Berkes, P.2    Orban, G.3    Lengyel, M.4
  • 55
    • 84655167229 scopus 로고    scopus 로고
    • Neural correlates of reliability-based cue weighting during multisensory integration
    • Fetsch, C.R., Pouget, A., Deangelis, G.C. & Angelaki, D.E. Neural correlates of reliability-based cue weighting during multisensory integration. Nat. Neurosci. 15, 146-154 (2012).
    • (2012) Nat. Neurosci. , vol.15 , pp. 146-154
    • Fetsch, C.R.1    Pouget, A.2    Deangelis, G.C.3    Angelaki, D.E.4
  • 56
    • 57649192772 scopus 로고    scopus 로고
    • Bayesian decision making with probabilistic population codes
    • Beck, J.M. et al. Bayesian decision making with probabilistic population codes. Neuron 60, 1142-1152 (2008).
    • (2008) Neuron , vol.60 , pp. 1142-1152
    • Beck, J.M.1
  • 57
    • 79951685112 scopus 로고    scopus 로고
    • Variance as a signature of neural computations during decision making
    • Churchland, A.K. et al. Variance as a signature of neural computations during decision making. Neuron 69, 818-831 (2011).
    • (2011) Neuron , vol.69 , pp. 818-831
    • Churchland, A.K.1
  • 58
    • 80054948790 scopus 로고    scopus 로고
    • Marginalization in neural circuits with divisive normalization
    • Beck, J.M., Latham, P.E. & Pouget, A. Marginalization in neural circuits with divisive normalization. J. Neurosci. 31, 15310-15319 (2011).
    • (2011) J. Neurosci. , vol.31 , pp. 15310-15319
    • Beck, J.M.1    Latham, P.E.2    Pouget, A.3
  • 60
    • 84877784552 scopus 로고    scopus 로고
    • Complex inference in neural circuits with probabilistic population codes and topic models
    • ed. Bartlett, P., MIT Press
    • Beck, J., Heller, K. & Pouget, A. Complex inference in neural circuits with probabilistic population codes and topic models. in Advances in Neural Information Processing Systems (ed. Bartlett, P.) 3068-3076 (MIT Press, 2012).
    • (2012) Advances in Neural Information Processing Systems , vol.3068-3076
    • Beck, J.1    Heller, K.2    Pouget, A.3
  • 61
    • 0033360244 scopus 로고    scopus 로고
    • Reading population codes: A neural implementation of ideal observers
    • Deneve, S., Latham, P.E. & Pouget, A. Reading population codes: a neural implementation of ideal observers. Nat. Neurosci. 2, 740-745 (1999).
    • (1999) Nat. Neurosci. , vol.2 , pp. 740-745
    • Deneve, S.1    Latham, P.E.2    Pouget, A.3
  • 62
    • 0034932944 scopus 로고    scopus 로고
    • Efficient computation and cue integration with noisy population codes
    • Deneve, S., Latham, P.E. & Pouget, A. Efficient computation and cue integration with noisy population codes. Nat. Neurosci. 4, 826-831 (2001).
    • (2001) Nat. Neurosci. , vol.4 , pp. 826-831
    • Deneve, S.1    Latham, P.E.2    Pouget, A.3
  • 64
    • 0042326369 scopus 로고    scopus 로고
    • Neural representation of probabilistic information
    • Barber, M.J., Clark, J.W. & Anderson, C.H. Neural representation of probabilistic information. Neural Comput. 15, 1843-1864 (2003).
    • (2003) Neural Comput. , vol.15 , pp. 1843-1864
    • Barber, M.J.1    Clark, J.W.2    Anderson, C.H.3
  • 65
    • 0034623811 scopus 로고    scopus 로고
    • The contribution of noise to contrast invariance of orientation tuning in cat visual cortex
    • Anderson, J.S., Lampl, I., Gillespie, D.C. & Ferster, D. The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science 290, 1968-1972 (2000).
    • (2000) Science , vol.290 , pp. 1968-1972
    • Anderson, J.S.1    Lampl, I.2    Gillespie, D.C.3    Ferster, D.4
  • 66
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay, D.J.C. Bayesian Interpolation. Neural Comput. 4, 415-447 (1992).
    • (1992) Neural Comput. , vol.4 , pp. 415-447
    • Mackay, D.J.C.1
  • 67
    • 17044416469 scopus 로고    scopus 로고
    • Generalized Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information transmission
    • Toyoizumi, T., Pfister, J.P., Aihara, K. & Gerstner, W. Generalized Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information transmission. Proc. Natl. Acad. Sci. USA 102, 5239-5244 (2005).
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 5239-5244
    • Toyoizumi, T.1    Pfister, J.P.2    Aihara, K.3    Gerstner, W.4
  • 68
    • 33847336412 scopus 로고    scopus 로고
    • Reducing the variability of neural responses: A computational theory of spike timing-dependent plasticity
    • Bohte, S.M. & Mozer, M.C. Reducing the variability of neural responses: a computational theory of spike timing-dependent plasticity. Neural Comput. 19, 371-403 (2007).
    • (2007) Neural Comput. , vol.19 , pp. 371-403
    • Bohte, S.M.1    Mozer, M.C.2
  • 69
    • 77953779789 scopus 로고    scopus 로고
    • On the maximization of information flow between spiking neurons
    • Parra, L.C., Beck, J.M. & Bell, A.J. On the maximization of information flow between spiking neurons. Neural Comput. 21, 2991-3009 (2009).
    • (2009) Neural Comput. , vol.21 , pp. 2991-3009
    • Parra, L.C.1    Beck, J.M.2    Bell, A.J.3
  • 71
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay, D.J.C. A practical Bayesian framework for backpropagation networks. Neural Comput. 4, 448-472 (1992).
    • (1992) Neural Comput. , vol.4 , pp. 448-472
    • Mackay, D.J.C.1
  • 72
    • 84858980829 scopus 로고    scopus 로고
    • Reasoning, learning and creativity: Frontal lobe function and human decision-making
    • Collins, A. & Koechlin, E. Reasoning, learning and creativity: frontal lobe function and human decision-making. PLoS Biol. 10, e1001293 (2012).
    • (2012) PLoS Biol. , vol.10
    • Collins, A.1    Koechlin, E.2
  • 75
    • 0031420798 scopus 로고    scopus 로고
    • The neural basis of cognitive development: A constructivist manifesto
    • discussion 556-596
    • Quartz, S.R. & Sejnowski, T.J. The neural basis of cognitive development: a constructivist manifesto. Behav. Brain Sci. 20, 537-556, discussion 556-596 (1997).
    • (1997) Behav. Brain Sci. , vol.20 , pp. 537-556
    • Quartz, S.R.1    Sejnowski, T.J.2
  • 76
    • 33745562839 scopus 로고    scopus 로고
    • Experience-dependent and cell type-specific spine growth in the neocortex
    • Holtmaat, A., Wilbrecht, L., Knott, G.W., Welker, E. & Svoboda, K. Experience-dependent and cell type-specific spine growth in the neocortex. Nature 441, 979-983 (2006).
    • (2006) Nature , vol.441 , pp. 979-983
    • Holtmaat, A.1    Wilbrecht, L.2    Knott, G.W.3    Welker, E.4    Svoboda, K.5
  • 77
    • 0037111840 scopus 로고    scopus 로고
    • Properties of unitary granule cell→Purkinje cell synapses in adult rat cerebellar slices
    • Isope, P. & Barbour, B. Properties of unitary granule cell→Purkinje cell synapses in adult rat cerebellar slices. J. Neurosci. 22, 9668-9678 (2002).
    • (2002) J. Neurosci. , vol.22 , pp. 9668-9678
    • Isope, P.1    Barbour, B.2
  • 78
    • 0031429913 scopus 로고    scopus 로고
    • Deictic codes for the embodiment of cognition
    • discussion 743-767
    • Ballard, D.H., Hayhoe, M.M., Pook, P.K. & Rao, R.P. Deictic codes for the embodiment of cognition. Behav. Brain Sci. 20, 723-742, discussion 743-767 (1997).
    • (1997) Behav. Brain Sci. , vol.20 , pp. 723-742
    • Ballard, D.H.1    Hayhoe, M.M.2    Pook, P.K.3    Rao, R.P.4
  • 80
    • 0025516779 scopus 로고
    • Tensor product variable binding and the representation of symbolic structures in connectionist systems
    • Smolensky, P. Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artif. Intell. 46, 159-217 (1990).
    • (1990) Artif. Intell. , vol.46 , pp. 159-217
    • Smolensky, P.1
  • 82
    • 84877956837 scopus 로고    scopus 로고
    • Compositionality and biologically plausible models
    • eds. Hinzen, W., Machery, E. & Werning, M.
    • Stewart, T. & Eliasmith, C. Compositionality and biologically plausible models. in Oxford Handbook of Compositionality (eds. Hinzen, W., Machery, E. & Werning, M.) (2011).
    • (2011) Oxford Handbook of Compositionality
    • Stewart, T.1    Eliasmith, C.2
  • 84
    • 34249983501 scopus 로고    scopus 로고
    • Behavioral dynamics of intercepting a moving target
    • Fajen, B.R. & Warren, W.H. Behavioral dynamics of intercepting a moving target. Exp. Brain Res. 180, 303-319 (2007).
    • (2007) Exp. Brain Res. , vol.180 , pp. 303-319
    • Fajen, B.R.1    Warren, W.H.2
  • 85
    • 84864523394 scopus 로고    scopus 로고
    • Bayesian just-so stories in psychology and neuroscience
    • Bowers, J.S. & Davis, C.J. Bayesian just-so stories in psychology and neuroscience. Psychol. Bull. 138, 389-414 (2012).
    • (2012) Psychol. Bull. , vol.138 , pp. 389-414
    • Bowers, J.S.1    Davis, C.J.2
  • 86
    • 84864500227 scopus 로고    scopus 로고
    • How the Bayesians got their beliefs (and what those beliefs actually are): Comment on Bowers and Davis (2012)
    • Griffiths, T.L., Chater, N., Norris, D. & Pouget, A. How the Bayesians got their beliefs (and what those beliefs actually are): comment on Bowers and Davis (2012). Psychol. Bull. 138, 415-422 (2012).
    • (2012) Psychol. Bull. , vol.138 , pp. 415-422
    • Griffiths, T.L.1    Chater, N.2    Norris, D.3    Pouget, A.4
  • 87
    • 8444239052 scopus 로고    scopus 로고
    • The Bayesian brain: The role of uncertainty in neural coding and computation
    • Knill, D.C. & Pouget, A. The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27, 712-719 (2004).
    • (2004) Trends Neurosci. , vol.27 , pp. 712-719
    • Knill, D.C.1    Pouget, A.2
  • 89
    • 79959784554 scopus 로고    scopus 로고
    • The probabilistic analysis of language acquisition: Theoretical, computational and experimental analysis
    • Hsu, A.S., Chater, N. & Vitanyi, P.M. The probabilistic analysis of language acquisition: theoretical, computational and experimental analysis. Cognition 120, 380-390 (2011).
    • (2011) Cognition , vol.120 , pp. 380-390
    • Hsu, A.S.1    Chater, N.2    Vitanyi, P.M.3
  • 90
    • 84872577241 scopus 로고    scopus 로고
    • Transformation invariance in pattern recognition-tangent distance and tangent propagation
    • (eds. Montavon, G., Orr, G.B. & Müller, K.-R.)
    • Simard, P.Y., LeCun, Y., Denke, J.S. & Victorri, B. Transformation invariance in pattern recognition-tangent distance and tangent propagation. in Neural Networks: Tricks of the Trade (eds. Montavon, G., Orr, G.B. & Müller, K.-R.) 235-269 (2012).
    • (2012) Neural Networks: Tricks of the Trade , pp. 235-269
    • Simard, P.Y.1    Lecun, Y.2    Denke, J.S.3    Victorri, B.4
  • 91
    • 0025037991 scopus 로고
    • A network that learns to recognize three-dimensional objects
    • Poggio, T. & Edelman, S. A network that learns to recognize three-dimensional objects. Nature 343, 263-266 (1990).
    • (1990) Nature , vol.343 , pp. 263-266
    • Poggio, T.1    Edelman, S.2
  • 92
    • 84859638124 scopus 로고    scopus 로고
    • Not noisy, just wrong: The role of suboptimal inference in behavioral variability
    • Beck, J.M., Ma, W.J., Pitkow, X., Latham, P.E. & Pouget, A. Not noisy, just wrong: the role of suboptimal inference in behavioral variability. Neuron 74, 30-39 (2012).
    • (2012) Neuron , vol.74 , pp. 30-39
    • Beck, J.M.1    Ma, W.J.2    Pitkow, X.3    Latham, P.E.4    Pouget, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.