|
Volumn 102, Issue 14, 2005, Pages 5239-5244
|
Generalized Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information transmission
a
EPFL
(Switzerland)
|
Author keywords
Computational neuroscience; Information theory; Learning; Spiking neuron model; Synaptic plasticity
|
Indexed keywords
ARTICLE;
BIENENSTOCK COOPER MUNRO RULE;
CALCULATION;
CORRELATION ANALYSIS;
INFORMATION PROCESSING;
LEARNING;
MATHEMATICAL ANALYSIS;
MATHEMATICAL MODEL;
MEMBRANE POTENTIAL;
NERVE CELL;
NERVE CELL PLASTICITY;
NEUROTRANSMISSION;
PRESYNAPTIC NERVE;
PRIORITY JOURNAL;
STATISTICAL ANALYSIS;
SYNAPSE;
THEORY;
ACTION POTENTIALS;
HOMEOSTASIS;
MODELS, NEUROLOGICAL;
NEURONAL PLASTICITY;
NEURONS;
SYNAPTIC TRANSMISSION;
|
EID: 17044416469
PISSN: 00278424
EISSN: None
Source Type: Journal
DOI: 10.1073/pnas.0500495102 Document Type: Article |
Times cited : (96)
|
References (35)
|