메뉴 건너뛰기




Volumn 52, Issue 31, 2013, Pages 10720-10731

Mixture discriminant monitoring: A hybrid method for statistical process monitoring and fault diagnosis/isolation

Author keywords

[No Author keywords available]

Indexed keywords

FISHER DISCRIMINANT ANALYSIS; IN-PROCESS MONITORING; INDUSTRIAL PROCESSS; MULTIVARIATE APPROACH; ON-LINE PROCESS MONITORING; STATISTICAL PROCESS CONTROLS (SPC); STATISTICAL PROCESS MONITORING; SUPERVISED LEARNING METHODS;

EID: 84881418463     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie400418c     Document Type: Article
Times cited : (17)

References (42)
  • 1
    • 33644686538 scopus 로고    scopus 로고
    • The process analytical technology initiative and multivariate process analysis, monitoring and control
    • Kourti, T. The process analytical technology initiative and multivariate process analysis, monitoring and control Anal. Bioanal. Chem. 2006, 384, 1043
    • (2006) Anal. Bioanal. Chem. , vol.384 , pp. 1043
    • Kourti, T.1
  • 2
  • 3
    • 36749052831 scopus 로고    scopus 로고
    • Monitoring a complex refining process using multivariate statistics
    • AlGhazzawi, A.; Lennox, B. Monitoring a complex refining process using multivariate statistics Control Eng. Pract. 2008, 16, 294
    • (2008) Control Eng. Pract. , vol.16 , pp. 294
    • Alghazzawi, A.1    Lennox, B.2
  • 4
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R. A. The use of multiple measurements in taxonomic problems Ann. Hum. Genet. 1936, 7, 179
    • (1936) Ann. Hum. Genet. , vol.7 , pp. 179
    • Fisher, R.A.1
  • 5
    • 0034643075 scopus 로고    scopus 로고
    • Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis
    • Chiang, L. H.; Russell, E. L.; Braatz, R. D. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis Chemom. Intell. Lab. Syst. 2000, 50, 243
    • (2000) Chemom. Intell. Lab. Syst. , vol.50 , pp. 243
    • Chiang, L.H.1    Russell, E.L.2    Braatz, R.D.3
  • 6
    • 2342505830 scopus 로고    scopus 로고
    • Fault diagnosis based on Fisher discriminant analysis and support vector machines
    • Chiang, L. H.; Kotanchek, M. E.; Kordon, A. K. Fault diagnosis based on Fisher discriminant analysis and support vector machines Comput. Chem. Eng. 2004, 28, 1389
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1389
    • Chiang, L.H.1    Kotanchek, M.E.2    Kordon, A.K.3
  • 7
    • 14644427213 scopus 로고    scopus 로고
    • A new fault diagnosis method using fault directions in Fisher discriminant analysis
    • He, Q. P.; Qin, S. J.; Wang, J. A new fault diagnosis method using fault directions in Fisher discriminant analysis AIChE J. 2005, 51, 555
    • (2005) AIChE J. , vol.51 , pp. 555
    • He, Q.P.1    Qin, S.J.2    Wang, J.3
  • 8
    • 2342521341 scopus 로고    scopus 로고
    • Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
    • Choi, S. W.; Park, J. H.; Lee, I. B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis Comput. Chem. Eng. 2004, 28, 1377
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1377
    • Choi, S.W.1    Park, J.H.2    Lee, I.B.3
  • 9
    • 79958703777 scopus 로고    scopus 로고
    • Localized Fisher discriminant analysis based complex chemical process monitoring
    • Yu, J. Localized Fisher discriminant analysis based complex chemical process monitoring AIChE J. 2011, 57, 1817
    • (2011) AIChE J. , vol.57 , pp. 1817
    • Yu, J.1
  • 10
    • 0032686509 scopus 로고    scopus 로고
    • Real-time monitoring for a process with multiple operating modes
    • Hwang, D.; Han, C. Real-time monitoring for a process with multiple operating modes Control Eng. Pract. 1999, 7, 891
    • (1999) Control Eng. Pract. , vol.7 , pp. 891
    • Hwang, D.1    Han, C.2
  • 11
    • 0032898793 scopus 로고    scopus 로고
    • Mixture principal component analysis models for process monitoring
    • Chen, J.; Liu, J. Mixture principal component analysis models for process monitoring Ind. Eng. Chem. Res. 1999, 38, 1478
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 1478
    • Chen, J.1    Liu, J.2
  • 12
    • 0035255106 scopus 로고    scopus 로고
    • Performance monitoring of a multi-product semi-batch process
    • Lane, S.; Martin, E.; Kooijmans, R.; Morris, A. Performance monitoring of a multi-product semi-batch process J. Process Control 2001, 11, 1
    • (2001) J. Process Control , vol.11 , pp. 1
    • Lane, S.1    Martin, E.2    Kooijmans, R.3    Morris, A.4
  • 13
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operating modes through multiple principle component analysis models
    • Zhao, S.; Zhang, J.; Xu, Y. Monitoring of processes with multiple operating modes through multiple principle component analysis models Ind. Eng. Chem. Res. 2004, 43, 7025
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 7025
    • Zhao, S.1    Zhang, J.2    Xu, Y.3
  • 14
    • 33646178973 scopus 로고    scopus 로고
    • Performance monitoring of processes with multiple operating modes through multiple PLS models
    • Zhao, S.; Zhang, J.; Xu, Y. Performance monitoring of processes with multiple operating modes through multiple PLS models J. Process Control 2006, 16, 763
    • (2006) J. Process Control , vol.16 , pp. 763
    • Zhao, S.1    Zhang, J.2    Xu, Y.3
  • 15
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee, J. M.; Yoo, C. K.; Lee, I. B. Statistical process monitoring with independent component analysis J.Process Control 2004, 14, 467
    • (2004) J.Process Control , vol.14 , pp. 467
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 16
    • 34247109083 scopus 로고    scopus 로고
    • Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
    • Ge, Z.; Song, Z. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors Ind. Eng. Chem. Res. 2007, 46, 2054
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 2054
    • Ge, Z.1    Song, Z.2
  • 17
    • 52649119206 scopus 로고    scopus 로고
    • Statistical-based monitoring of multivariate non-Gaussian systems
    • Liu, X.; Xie, L.; Kruger, U.; Littler, T.; Wang, S. Statistical-based monitoring of multivariate non-Gaussian systems AIChE J. 2008, 54, 2379
    • (2008) AIChE J. , vol.54 , pp. 2379
    • Liu, X.1    Xie, L.2    Kruger, U.3    Littler, T.4    Wang, S.5
  • 18
    • 84861191986 scopus 로고    scopus 로고
    • A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
    • Rashid, M. M.; Yu, J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring Chemom. Intell. Lab. Syst. 2012, 115, 44
    • (2012) Chemom. Intell. Lab. Syst. , vol.115 , pp. 44
    • Rashid, M.M.1    Yu, J.2
  • 20
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu, J.; Qin, S. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models AIChE J. 2008, 54, 1811
    • (2008) AIChE J. , vol.54 , pp. 1811
    • Yu, J.1    Qin, S.2
  • 21
    • 81055156706 scopus 로고    scopus 로고
    • A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
    • Yu, J. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes Chem. Eng. Sci. 2011, 68, 506
    • (2011) Chem. Eng. Sci. , vol.68 , pp. 506
    • Yu, J.1
  • 22
    • 77957355948 scopus 로고    scopus 로고
    • Statistical analysis and online monitoring for multimode processes with between-mode transitions
    • Zhao, C.; Yao, Y.; Gao, F.; Wang, F. Statistical analysis and online monitoring for multimode processes with between-mode transitions Chem. Eng. Sci. 2010, 65, 5961
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 5961
    • Zhao, C.1    Yao, Y.2    Gao, F.3    Wang, F.4
  • 23
    • 33750303476 scopus 로고    scopus 로고
    • A possibilistic clustering approach to novel fault detection and isolation
    • Detroja, K. P.; Gudi, R. D.; Patwardhan, S. C. A possibilistic clustering approach to novel fault detection and isolation J. Process Control 2006, 16, 1055
    • (2006) J. Process Control , vol.16 , pp. 1055
    • Detroja, K.P.1    Gudi, R.D.2    Patwardhan, S.C.3
  • 25
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley, C.; Raftery, A. E. Model-based clustering, discriminant analysis, and density estimation J. Am. Stat. Assoc. 2002, 97, 611
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 611
    • Fraley, C.1    Raftery, A.E.2
  • 26
    • 33750172858 scopus 로고    scopus 로고
    • Probability density estimation via an infinite Gaussian mixture model: Application to statistical process monitoring
    • Chen, T.; Morris, J.; Martin, E. Probability density estimation via an infinite Gaussian mixture model: application to statistical process monitoring J. R. Stat. Soc., Ser. C 2006, 55, 699
    • (2006) J. R. Stat. Soc., Ser. C , vol.55 , pp. 699
    • Chen, T.1    Morris, J.2    Martin, E.3
  • 28
    • 0031168001 scopus 로고    scopus 로고
    • Recursive exponentially weighted PLS and its applications to adaptive control and prediction
    • Dayal, B.; MacGregor, J. Recursive exponentially weighted PLS and its applications to adaptive control and prediction J. Process Control 1997, 7, 169
    • (1997) J. Process Control , vol.7 , pp. 169
    • Dayal, B.1    MacGregor, J.2
  • 29
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin, S. Recursive PLS algorithms for adaptive data modeling Comput. Chem. Eng. 1998, 22, 503
    • (1998) Comput. Chem. Eng. , vol.22 , pp. 503
    • Qin, S.1
  • 31
    • 22944436794 scopus 로고    scopus 로고
    • Process monitoring approach using fast moving window PCA
    • Wang, X.; Kruger, U.; Irwin, G. W. Process monitoring approach using fast moving window PCA Ind. Eng. Chem. Res. 2005, 44, 5691
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 5691
    • Wang, X.1    Kruger, U.2    Irwin, G.W.3
  • 32
    • 0001606671 scopus 로고    scopus 로고
    • Contribution plots: A missing link in multivariate quality control
    • Miller, P.; Swanson, R.; Heckler, C. Contribution plots: A missing link in multivariate quality control Appl. Math. Comput. Sci. 1998, 8, 775
    • (1998) Appl. Math. Comput. Sci. , vol.8 , pp. 775
    • Miller, P.1    Swanson, R.2    Heckler, C.3
  • 33
    • 0033659644 scopus 로고    scopus 로고
    • Confidence limits for contribution plots
    • Conlin, A.; Martin, E.; Morris, A. Confidence limits for contribution plots J. Chemom. 2000, 14, 725
    • (2000) J. Chemom. , vol.14 , pp. 725
    • Conlin, A.1    Martin, E.2    Morris, A.3
  • 34
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • Qin, S. J. Statistical process monitoring: basics and beyond J. Chemom. 2003, 17, 480
    • (2003) J. Chemom. , vol.17 , pp. 480
    • Qin, S.J.1
  • 35
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-based fault identification using a combined index
    • Yue, H. H.; Qin, S. J. Reconstruction-based fault identification using a combined index Ind. Eng. Chem. Res. 2001, 40, 4403
    • (2001) Ind. Eng. Chem. Res. , vol.40 , pp. 4403
    • Yue, H.H.1    Qin, S.J.2
  • 37
    • 78149280345 scopus 로고    scopus 로고
    • A branch and bound method for isolation of faulty variables through missing variable analysis
    • Kariwala, V.; Odiowei, P. E.; Cao, Y.; Chen, T. A branch and bound method for isolation of faulty variables through missing variable analysis J. Process Control 2010, 20, 1198
    • (2010) J. Process Control , vol.20 , pp. 1198
    • Kariwala, V.1    Odiowei, P.E.2    Cao, Y.3    Chen, T.4
  • 38
    • 84861052085 scopus 로고    scopus 로고
    • Progress in root cause and fault propagation analysis of large-scale industrial processes
    • Yang, F.; Xiao, D. Progress in root cause and fault propagation analysis of large-scale industrial processes. J. Control Sci. Eng. 2012, 2012
    • (2012) J. Control Sci. Eng. , vol.2012
    • Yang, F.1    Xiao, D.2
  • 39
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs, J.; Vogel, E. A plant-wide industrial process control problem Comput. Chem. Eng. 1993, 17, 245
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245
    • Downs, J.1    Vogel, E.2
  • 40
    • 0030217795 scopus 로고    scopus 로고
    • Decentralized control of the Tennessee Eastman challenge process
    • Ricker, L. Decentralized control of the Tennessee Eastman challenge process J. Process Control 1996, 6, 205
    • (1996) J. Process Control , vol.6 , pp. 205
    • Ricker, L.1
  • 41
    • 84866069902 scopus 로고    scopus 로고
    • A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
    • Yin, S.; Ding, S. X.; Haghani, A.; Hao, H.; Zhang, P. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process J. Process Control 2012, 22, 1567-1581
    • (2012) J. Process Control , vol.22 , pp. 1567-1581
    • Yin, S.1    Ding, S.X.2    Haghani, A.3    Hao, H.4    Zhang, P.5
  • 42
    • 84865620175 scopus 로고    scopus 로고
    • A multiple-time-region (MTR)-based fault subspace decomposition and reconstruction modeling strategy for online fault diagnosis
    • Zhao, C.; Sun, Y.; Gao, F. A multiple-time-region (MTR)-based fault subspace decomposition and reconstruction modeling strategy for online fault diagnosis Ind. Eng. Chem. Res. 2012, 51, 11207
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 11207
    • Zhao, C.1    Sun, Y.2    Gao, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.