메뉴 건너뛰기




Volumn 11, Issue 7, 2013, Pages

Effects of Resveratrol and SIRT1 on PGC-1α Activity and Mitochondrial Biogenesis: A Reevaluation

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATE; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; MITOCHONDRIAL PROTEIN; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; RESVERATROL; SIRTUIN 1;

EID: 84880926594     PISSN: 15449173     EISSN: 15457885     Source Type: Journal    
DOI: 10.1371/journal.pbio.1001603     Document Type: Article
Times cited : (181)

References (58)
  • 1
    • 33751072349 scopus 로고    scopus 로고
    • Resveratrol improves health and survival of mice on a high-calorie diet
    • Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, et al. (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444: 337-342.
    • (2006) Nature , vol.444 , pp. 337-342
    • Baur, J.A.1    Pearson, K.J.2    Price, N.L.3    Jamieson, H.A.4    Lerin, C.5
  • 2
    • 48349144852 scopus 로고    scopus 로고
    • Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span
    • Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, et al. (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8: 157-168.
    • (2008) Cell Metab , vol.8 , pp. 157-168
    • Pearson, K.J.1    Baur, J.A.2    Lewis, K.N.3    Peshkin, L.4    Price, N.L.5
  • 3
    • 33845399894 scopus 로고    scopus 로고
    • Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α
    • Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, et al. (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127: 1109-1122.
    • (2006) Cell , vol.127 , pp. 1109-1122
    • Lagouge, M.1    Argmann, C.2    Gerhart-Hines, Z.3    Meziane, H.4    Lerin, C.5
  • 4
    • 79951794971 scopus 로고    scopus 로고
    • Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice
    • Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, et al. (2011) Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 66: 191-201.
    • (2011) J Gerontol A Biol Sci Med Sci , vol.66 , pp. 191-201
    • Miller, R.A.1    Harrison, D.E.2    Astle, C.M.3    Baur, J.A.4    Boyd, A.R.5
  • 5
    • 84871876229 scopus 로고    scopus 로고
    • Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice
    • Strong R, Miller RA, Astle CM, Baur JA, de Cabo R, et al. (2012) Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 68: 6-16.
    • (2012) J Gerontol A Biol Sci Med Sci , vol.68 , pp. 6-16
    • Strong, R.1    Miller, R.A.2    Astle, C.M.3    Baur, J.A.4    de Cabo, R.5
  • 6
    • 33845596500 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism
    • Handschin C, Spiegelman BM, (2006) Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27: 728-735.
    • (2006) Endocr Rev , vol.27 , pp. 728-735
    • Handschin, C.1    Spiegelman, B.M.2
  • 7
    • 54849425547 scopus 로고    scopus 로고
    • Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
    • Feige JN, Lagouge M, Canto C, Strehle A, Houten SM, et al. (2008) Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 8: 347-358.
    • (2008) Cell Metab , vol.8 , pp. 347-358
    • Feige, J.N.1    Lagouge, M.2    Canto, C.3    Strehle, A.4    Houten, S.M.5
  • 8
    • 77950246109 scopus 로고    scopus 로고
    • SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
    • Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, et al. (2010) SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 285: 8340-8351.
    • (2010) J Biol Chem , vol.285 , pp. 8340-8351
    • Pacholec, M.1    Bleasdale, J.E.2    Chrunyk, B.3    Cunningham, D.4    Flynn, D.5
  • 9
    • 0141719702 scopus 로고    scopus 로고
    • Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
    • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, et al. (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425: 191-196.
    • (2003) Nature , vol.425 , pp. 191-196
    • Howitz, K.T.1    Bitterman, K.J.2    Cohen, H.Y.3    Lamming, D.W.4    Lavu, S.5
  • 11
    • 20444444649 scopus 로고    scopus 로고
    • Mechanism of human SIRT1 activation by resveratrol
    • Borra MT, Smith BC, Denu JM, (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280: 17187-17195.
    • (2005) J Biol Chem , vol.280 , pp. 17187-17195
    • Borra, M.T.1    Smith, B.C.2    Denu, J.M.3
  • 12
    • 34249846128 scopus 로고    scopus 로고
    • Resveratrol stimulates AMP kinase activity in neurons
    • Dasgupta B, Milbrandt J, (2007) Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci USA 104: 7217-7222.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 7217-7222
    • Dasgupta, B.1    Milbrandt, J.2
  • 13
    • 33749349202 scopus 로고    scopus 로고
    • Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice
    • Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, et al. (2006) Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55: 2180-2191.
    • (2006) Diabetes , vol.55 , pp. 2180-2191
    • Zang, M.1    Xu, S.2    Maitland-Toolan, K.A.3    Zuccollo, A.4    Hou, X.5
  • 14
    • 34247600642 scopus 로고    scopus 로고
    • Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase
    • Park CE, Kim MJ, Lee JH, Min BI, Bae H, et al. (2007) Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase. Exp Mol Med 39: 222-229.
    • (2007) Exp Mol Med , vol.39 , pp. 222-229
    • Park, C.E.1    Kim, M.J.2    Lee, J.H.3    Min, B.I.4    Bae, H.5
  • 15
    • 67349276169 scopus 로고    scopus 로고
    • AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
    • Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, et al. (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458: 1056-1060.
    • (2009) Nature , vol.458 , pp. 1056-1060
    • Cantó, C.1    Gerhart-Hines, Z.2    Feige, J.N.3    Lagouge, M.4    Noriega, L.5
  • 16
    • 0014198263 scopus 로고
    • Biochemical adaptations in muscle. Effects of exercise on mitochondrial O2 uptake and respiratory enzyme activity in skeletal muscle
    • Holloszy JO, (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial O2 uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242: 2278-2282.
    • (1967) J Biol Chem , vol.242 , pp. 2278-2282
    • Holloszy, J.O.1
  • 17
    • 80054956371 scopus 로고    scopus 로고
    • Regulation of mitochondrial biogenesis and GLUT4 expression by exercise
    • Holloszy JO, (2011) Regulation of mitochondrial biogenesis and GLUT4 expression by exercise. Compr Physiol 1: 921-940.
    • (2011) Compr Physiol , vol.1 , pp. 921-940
    • Holloszy, J.O.1
  • 18
    • 84862234497 scopus 로고    scopus 로고
    • Lack of exercise is a major cause of chronic diseases
    • Booth F, Roberts CK, Laye MJ, (2012) Lack of exercise is a major cause of chronic diseases. Compr Physiol 2: 1143-1211.
    • (2012) Compr Physiol , vol.2 , pp. 1143-1211
    • Booth, F.1    Roberts, C.K.2    Laye, M.J.3
  • 19
    • 0033922250 scopus 로고    scopus 로고
    • Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals
    • Zheng J, Ramierz VD, (2000) Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. British Journal of Pharmacology 130: 1115-1123.
    • (2000) British Journal of Pharmacology , vol.130 , pp. 1115-1123
    • Zheng, J.1    Ramierz, V.D.2
  • 20
    • 0033027321 scopus 로고    scopus 로고
    • New bioactive flavonoids and stilbenes in Cubé resin insecticide
    • Fang N, Casida JE, (1999) New bioactive flavonoids and stilbenes in Cubé resin insecticide. Journal of Natural Products 62: 205-210.
    • (1999) Journal of Natural Products , vol.62 , pp. 205-210
    • Fang, N.1    Casida, J.E.2
  • 21
    • 48349106315 scopus 로고    scopus 로고
    • Potential of resveratrol in anticancer and anti-inflammatory therapy
    • Udenigwe CC, Ramprasath VR, Aluko RE, Jones PJ, (2008) Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr Rev 66: 445-454.
    • (2008) Nutr Rev , vol.66 , pp. 445-454
    • Udenigwe, C.C.1    Ramprasath, V.R.2    Aluko, R.E.3    Jones, P.J.4
  • 22
    • 34547545892 scopus 로고    scopus 로고
    • AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α
    • Jäger S, Handschin C, St-Pierre J, Spiegelman BM, (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc Natl Acad Sci USA 104: 12017-12022.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 12017-12022
    • Jäger, S.1    Handschin, C.2    St-Pierre, J.3    Spiegelman, B.M.4
  • 23
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1
    • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, et al. (2005) Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434: 113-118.
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1    Lerin, C.2    Haas, W.3    Gygi, S.P.4    Spiegelman, B.M.5
  • 24
    • 0035913903 scopus 로고    scopus 로고
    • hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase
    • Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, et al. (2001) hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107: 149-159.
    • (2001) Cell , vol.107 , pp. 149-159
    • Vaziri, H.1    Dessain, S.K.2    Ng Eaton, E.3    Imai, S.I.4    Frye, R.A.5
  • 25
    • 0033977890 scopus 로고    scopus 로고
    • The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes
    • Vega R, Huss JM, Kelly DP, (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20: 1868-1876.
    • (2000) Mol Cell Biol , vol.20 , pp. 1868-1876
    • Vega, R.1    Huss, J.M.2    Kelly, D.P.3
  • 26
    • 21244477127 scopus 로고    scopus 로고
    • Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway
    • Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, et al. (2005) Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 280: 19587-19593.
    • (2005) J Biol Chem , vol.280 , pp. 19587-19593
    • Akimoto, T.1    Pohnert, S.C.2    Li, P.3    Zhang, M.4    Gumbs, C.5
  • 27
    • 1642293248 scopus 로고    scopus 로고
    • p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene
    • Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, et al. (2004) p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol Cell Biol 24: 3057-3067.
    • (2004) Mol Cell Biol , vol.24 , pp. 3057-3067
    • Cao, W.1    Daniel, K.W.2    Robidoux, J.3    Puigserver, P.4    Medvedev, A.V.5
  • 28
    • 34547092191 scopus 로고    scopus 로고
    • Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation
    • Wright DC, Geiger PC, Han D-H, Jones TE, Holloszy JO, (2007) Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem 282: 18793-18799.
    • (2007) J Biol Chem , vol.282 , pp. 18793-18799
    • Wright, D.C.1    Geiger, P.C.2    Han, D.-H.3    Jones, T.E.4    Holloszy, J.O.5
  • 29
    • 84878499999 scopus 로고    scopus 로고
    • β-Adrenergic stimulation does not activate p38 MAPKinase or induce PGC-1α in skeletal muscle
    • Kim SH, Asaka M, Higashida K, Takahashi Y, Holloszy JO, et al. (2013) β-Adrenergic stimulation does not activate p38 MAPKinase or induce PGC-1α in skeletal muscle. Am J Physiol Endocrinol Metab 304: E844-E852.
    • (2013) Am J Physiol , vol.304
    • Kim, S.H.1    Asaka, M.2    Higashida, K.3    Takahashi, Y.4    Holloszy, J.O.5
  • 30
    • 52749095883 scopus 로고    scopus 로고
    • Functional interaction of regulatory factors with the Pgc-1α promoter in response to exercise by in vivo imaging
    • Akimoto T, Li P, Yan Z, (2008) Functional interaction of regulatory factors with the Pgc-1α promoter in response to exercise by in vivo imaging. Am J Physiol: Cell Physiol 295: C288-C292.
    • (2008) Am J Physiol: Cell Physiol , vol.295
    • Akimoto, T.1    Li, P.2    Yan, Z.3
  • 31
    • 0037452677 scopus 로고    scopus 로고
    • Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1alpha) and mitochondrial function by MEF2 and HDAC5
    • Czubryt MP, McAnnally J, Fishman GI, Olson EN, (2003) Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1alpha) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci USA 100: 1711-1716.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 1711-1716
    • Czubryt, M.P.1    McAnnally, J.2    Fishman, G.I.3    Olson, E.N.4
  • 32
    • 42449161465 scopus 로고    scopus 로고
    • AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5
    • McGee SL, van Denderen BJ, Howlett KF, Mollica J, Schertzer JD, et al. (2008) AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57: 860-867.
    • (2008) Diabetes , vol.57 , pp. 860-867
    • McGee, S.L.1    van Denderen, B.J.2    Howlett, K.F.3    Mollica, J.4    Schertzer, J.D.5
  • 33
    • 77249156847 scopus 로고    scopus 로고
    • Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
    • Cantó C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, et al. (2010) Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metabolism 11: 213-219.
    • (2010) Cell Metabolism , vol.11 , pp. 213-219
    • Cantó, C.1    Jiang, L.Q.2    Deshmukh, A.S.3    Mataki, C.4    Coste, A.5
  • 34
    • 79953752384 scopus 로고    scopus 로고
    • PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
    • Bai P, Cantó C, Oudart H, Brunyanszki A, Cen Y, et al. (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metabolism 13: 461-468.
    • (2011) Cell Metabolism , vol.13 , pp. 461-468
    • Bai, P.1    Cantó, C.2    Oudart, H.3    Brunyanszki, A.4    Cen, Y.5
  • 35
    • 34247259630 scopus 로고    scopus 로고
    • Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
    • Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, et al. (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 26: 1913-1923.
    • (2007) EMBO J , vol.26 , pp. 1913-1923
    • Gerhart-Hines, Z.1    Rodgers, J.T.2    Bare, O.3    Lerin, C.4    Kim, S.H.5
  • 36
    • 33744534726 scopus 로고    scopus 로고
    • GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α
    • Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, et al. (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell Metabolism 3: 429-438.
    • (2006) Cell Metabolism , vol.3 , pp. 429-438
    • Lerin, C.1    Rodgers, J.T.2    Kalume, D.E.3    Kim, S.H.4    Pandey, A.5
  • 37
    • 79953761260 scopus 로고    scopus 로고
    • PARP-2 regulates SIRT1 expression and whole-body energy expenditure
    • Bai P, Cantó C, Brunyanszki A, Huber A, Szanto M, et al. (2011) PARP-2 regulates SIRT1 expression and whole-body energy expenditure. Cell Metab 13: 450-460.
    • (2011) Cell Metab , vol.13 , pp. 450-460
    • Bai, P.1    Cantó, C.2    Brunyanszki, A.3    Huber, A.4    Szanto, M.5
  • 38
    • 55949084664 scopus 로고    scopus 로고
    • The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1α
    • Coste A, Louet JF, Lagouge M, Lerin C, Antal MC, et al. (2008) The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1α. PNAS 105: 17187-17192.
    • (2008) PNAS , vol.105 , pp. 17187-17192
    • Coste, A.1    Louet, J.F.2    Lagouge, M.3    Lerin, C.4    Antal, M.C.5
  • 39
    • 67749124479 scopus 로고    scopus 로고
    • GCN5-mediated transcriptional control of the metabolic coactivator PGC-1β through lysine acetylation
    • Kelly TJ, Lerin C, Haas W, Gygi SP, Puigserver P, (2009) GCN5-mediated transcriptional control of the metabolic coactivator PGC-1β through lysine acetylation. J Biol Chem 284: 19945-19952.
    • (2009) J Biol Chem , vol.284 , pp. 19945-19952
    • Kelly, T.J.1    Lerin, C.2    Haas, W.3    Gygi, S.P.4    Puigserver, P.5
  • 40
    • 15444377466 scopus 로고    scopus 로고
    • SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1
    • Bouras T, Sauve AA, Wang F, Quong AA, Perkins ND, et al. (2005) SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem 280: 10264-10276.
    • (2005) J Biol Chem , vol.280 , pp. 10264-10276
    • Bouras, T.1    Sauve, A.A.2    Wang, F.3    Quong, A.A.4    Perkins, N.D.5
  • 41
    • 18144411313 scopus 로고    scopus 로고
    • SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α
    • Nemoto S, Fergusson MM, Finkel T, (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J Biol Chem 280: 16456-16460.
    • (2005) J Biol Chem , vol.280 , pp. 16456-16460
    • Nemoto, S.1    Fergusson, M.M.2    Finkel, T.3
  • 42
    • 0032589689 scopus 로고    scopus 로고
    • Activation of PPARgamma coactivator-1 through transcription factor docking
    • Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, et al. (1999) Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286: 1368-1371.
    • (1999) Science , vol.286 , pp. 1368-1371
    • Puigserver, P.1    Adelmant, G.2    Wu, Z.3    Fan, M.4    Xu, J.5
  • 43
    • 65249102660 scopus 로고    scopus 로고
    • The deacetylase enzyme SIRT1 is not associated with oxidative capacity in rat heart and skeletal muscle and its overexpression reduces mitochondrial biogenesis
    • Gurd BJ, Yoshida Y, Lally J, Holloway GP, Bonen A, (2009) The deacetylase enzyme SIRT1 is not associated with oxidative capacity in rat heart and skeletal muscle and its overexpression reduces mitochondrial biogenesis. J Physiol 587 (8) (): 1817-1828.
    • (2009) J Physiol , vol.587 , Issue.8 , pp. 1817-1828
    • Gurd, B.J.1    Yoshida, Y.2    Lally, J.3    Holloway, G.P.4    Bonen, A.5
  • 45
    • 72849130743 scopus 로고    scopus 로고
    • Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction
    • Cohen DE, Supinski AM, Bonkowski MS, Donmez G, Guarente LP, (2009) Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev 23: 2812-2817.
    • (2009) Genes Dev , vol.23 , pp. 2812-2817
    • Cohen, D.E.1    Supinski, A.M.2    Bonkowski, M.S.3    Donmez, G.4    Guarente, L.P.5
  • 46
    • 57349140895 scopus 로고    scopus 로고
    • Linking sirtuins, IGF-I signaling, and starvation
    • Longo VD, (2009) Linking sirtuins, IGF-I signaling, and starvation. Exp Gerontol 44: 70-74.
    • (2009) Exp Gerontol , vol.44 , pp. 70-74
    • Longo, V.D.1
  • 47
    • 77955344258 scopus 로고    scopus 로고
    • SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus
    • Satoh A, Brace CS, Ben-Josef G, West T, Wozniak DF, et al. (2010) SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J Neurosci 30: 10220-10232.
    • (2010) J Neurosci , vol.30 , pp. 10220-10232
    • Satoh, A.1    Brace, C.S.2    Ben-Josef, G.3    West, T.4    Wozniak, D.F.5
  • 48
    • 80052089449 scopus 로고    scopus 로고
    • Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans
    • Soare A, Cangemi R, Omodei D, Holloszy JO, Fontana L, (2011) Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans. Aging 3: 374-379.
    • (2011) Aging , vol.3 , pp. 374-379
    • Soare, A.1    Cangemi, R.2    Omodei, D.3    Holloszy, J.O.4    Fontana, L.5
  • 49
    • 0019785152 scopus 로고
    • Effect of energy restriction on total heat production, basal metabolic rate, and specific dynamic action of food in rats
    • Forsum E, Hillman PE, Nesheim MC, (1981) Effect of energy restriction on total heat production, basal metabolic rate, and specific dynamic action of food in rats. J Nutr 111: 1691-1697.
    • (1981) J Nutr , vol.111 , pp. 1691-1697
    • Forsum, E.1    Hillman, P.E.2    Nesheim, M.C.3
  • 50
    • 0024601636 scopus 로고
    • Effect of chronic caloric restriction on physiological variables related to energy metabolism in the male Fischer 344 rat
    • Duffy PH, Feuers RJ, Leakey JA, Nakamura K, Turturro A, et al. (1989) Effect of chronic caloric restriction on physiological variables related to energy metabolism in the male Fischer 344 rat. Mech Ageing Dev 48: 117-133.
    • (1989) Mech Ageing Dev , vol.48 , pp. 117-133
    • Duffy, P.H.1    Feuers, R.J.2    Leakey, J.A.3    Nakamura, K.4    Turturro, A.5
  • 52
    • 45549098657 scopus 로고    scopus 로고
    • SirT1 regulates energy metabolism and response to caloric restriction in mice
    • 10.1371/journal.pone.0001759
    • Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, et al. (2008) SirT1 regulates energy metabolism and response to caloric restriction in mice. PLoS ONE 3: e1759 doi:10.1371/journal.pone.0001759.
    • (2008) PLoS ONE , vol.3
    • Boily, G.1    Seifert, E.L.2    Bevilacqua, L.3    He, X.H.4    Sabourin, G.5
  • 53
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • Puigserver P, Wu Z, Park CW, Graves R, Wright M, et al. (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829-839.
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1    Wu, Z.2    Park, C.W.3    Graves, R.4    Wright, M.5
  • 54
    • 0035947235 scopus 로고    scopus 로고
    • A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle
    • Mu J, Brozinick JT Jr, Valladares O, Bucan M, Birnbaum MJ, (2001) A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 7: 1085-1094.
    • (2001) Mol Cell , vol.7 , pp. 1085-1094
    • Mu, J.1    Brozinick Jr., J.T.2    Valladares, O.3    Bucan, M.4    Birnbaum, M.J.5
  • 56
    • 4143058006 scopus 로고    scopus 로고
    • Real-time imaging of peroxisome proliferator-activated receptor-gamma coactivator-1α promoter activity in skeletal muscles of living mice
    • Akimoto T, Sorg BS, Yan Z, (2004) Real-time imaging of peroxisome proliferator-activated receptor-gamma coactivator-1α promoter activity in skeletal muscles of living mice. Am J Physiol: Cell Physiol 287: C790-C796.
    • (2004) Am J Physiol: Cell Physiol , vol.287
    • Akimoto, T.1    Sorg, B.S.2    Yan, Z.3
  • 57
    • 79955930100 scopus 로고    scopus 로고
    • Deficiency of the mitochondrial electron transport chain in muscle does not cause insulin resistance
    • doi 10.1371/journal.pone.0019739
    • Han D-H, Hancock CR, Jung SR, Higashida K, Kim SH, et al. (2011) Deficiency of the mitochondrial electron transport chain in muscle does not cause insulin resistance. PLoS ONE 6: e19739 doi:10.1371/journal.pone.0019739.
    • (2011) PLoS ONE , vol.6
    • Han, D.-H.1    Hancock, C.R.2    Jung, S.R.3    Higashida, K.4    Kim, S.H.5
  • 58
    • 79551641369 scopus 로고    scopus 로고
    • Does calorie restriction induce mitochondrial biogenesis? A reevaluation
    • Hancock CR, Han D-H, Higashida K, Kim SH, Holloszy JO, (2011) Does calorie restriction induce mitochondrial biogenesis? A reevaluation. FASEB J 25: 785-791.
    • (2011) FASEB J , vol.25 , pp. 785-791
    • Hancock, C.R.1    Han, D.-H.2    Higashida, K.3    Kim, S.H.4    Holloszy, J.O.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.