메뉴 건너뛰기




Volumn 23, Issue 1, 2010, Pages 99-108

Semiconductor manufacturing process monitoring based on adaptive substatistical PCA

Author keywords

Adaptive substatistical principal component analysis (PCA); Non Gaussian; Process monitoring; Support vector data description

Indexed keywords

GAUSSIANS; MULTI-MODEL; MULTI-WAY PCA; MULTIVARIATE STATISTICAL PROCESS CONTROL; MULTIWAY PRINCIPAL COMPONENT ANALYSIS; NON-GAUSSIAN; NON-GAUSSIAN PROCESS; PROCESS DATA; PROCESS OPERATION; PRODUCT QUALITY; SEMICONDUCTOR MANUFACTURING; SEMICONDUCTOR MANUFACTURING PROCESS; SUPPORT VECTOR DATA DESCRIPTION; VALUE ESTIMATION;

EID: 76849101069     PISSN: 08946507     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSM.2009.2039188     Document Type: Article
Times cited : (52)

References (29)
  • 2
    • 0001067412 scopus 로고    scopus 로고
    • A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
    • B. M. Wise, N. B. Gallagher, S. W. Butler, D. D. White, Jr, and G. G. Barna, "A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process," J. Chemometr., vol.13, pp. 379-396, 1999.
    • (1999) J. Chemometr. , vol.13 , pp. 379-396
    • Wise, B.M.1    Gallagher, N.B.2    Butler, S.W.3    White Jr., D.D.4    Barna, G.G.5
  • 3
    • 33646731122 scopus 로고    scopus 로고
    • Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis
    • G. A. Cherry and S. J. Qin, "Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis," IEEE Trans. Semicond. Manuf., vol.19, pp. 159-172, 2006.
    • (2006) IEEE Trans. Semicond. Manuf. , vol.19 , pp. 159-172
    • Cherry, G.A.1    Qin, S.J.2
  • 4
    • 0032144398 scopus 로고    scopus 로고
    • Subspace approach to multidimensional fault identification and reconstruction
    • R. Dunia and S. J. Qin, "Subspace approach to multidimensional fault identification and reconstruction," AIChE J., vol.44, pp. 1813-1831, 1998.
    • (1998) AIChE J. , vol.44 , pp. 1813-1831
    • Dunia, R.1    Qin, S.J.2
  • 5
    • 0029252734 scopus 로고
    • Multivariate spc charts for monitoring batch process
    • P. Nomikos and J. F. MacGregor, "Multivariate spc charts for monitoring batch process," Technometrics, vol.37, pp. 41-59, 1995.
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 6
    • 33645389475 scopus 로고    scopus 로고
    • Evaluation of a pattern matching method for the Tennessee Eastman challenge process
    • A. Singhai and D. E. Seborg, "Evaluation of a pattern matching method for the Tennessee Eastman challenge process," J. Process Contr., vol.16, pp. 601-613, 2006.
    • (2006) J. Process Contr. , vol.16 , pp. 601-613
    • Singhai, A.1    Seborg, D.E.2
  • 7
    • 53649087137 scopus 로고    scopus 로고
    • Robust partial least squares regression: Part I, algorithmic developments
    • U. Kruger, Y. Zhou, X. Wang, D. Rooney, and J. Thompson, "Robust partial least squares regression: Part I, algorithmic developments," J. Chemometr., vol.22, pp. 1-13, 2008.
    • (2008) J. Chemometr. , vol.22 , pp. 1-13
    • Kruger, U.1    Zhou, Y.2    Wang, X.3    Rooney, D.4    Thompson, J.5
  • 8
    • 53649090056 scopus 로고    scopus 로고
    • Robust partial least squares regression: Part II, newalgorithmic and benchmark studies
    • U. Kruger, Y. Zhou, X. Wang, D. Rooney, and J. Thompson, "Robust partial least squares regression: Part II, newalgorithmic and benchmark studies," J. Chemometr., vol.22, pp. 14-22, 2008.
    • (2008) J. Chemometr. , vol.22 , pp. 14-22
    • Kruger, U.1    Zhou, Y.2    Wang, X.3    Rooney, D.4    Thompson, J.5
  • 9
    • 14644427213 scopus 로고    scopus 로고
    • A new fault diagnosis method using fault directions in Fisher discriminant analysis
    • Q. P. He, J. Wang, and S. J. Qin, "A new fault diagnosis method using fault directions in Fisher discriminant analysis," AIChE J., vol.51, pp. 555-571, 2005.
    • (2005) AIChE J. , vol.51 , pp. 555-571
    • He, Q.P.1    Wang, J.2    Qin, S.J.3
  • 10
    • 0344222193 scopus 로고    scopus 로고
    • Adaptive batch monitoring using hierarchical PCA
    • S. Rännar, J. F. MacGregor, and S. Wold, "Adaptive batch monitoring using hierarchical PCA," Chem. Intel. Lab. Syst., vol.41, pp. 73-81, 1998.
    • (1998) Chem. Intel. Lab. Syst. , vol.41 , pp. 73-81
    • Rännar, S.1    MacGregor, J.F.2    Wold, S.3
  • 13
    • 33749472827 scopus 로고    scopus 로고
    • Kernel classifier with adaptive structure and fixed memory for process diagnosis
    • H. Q.Wang, P. Li, F. R. Gao, Z. H. Song, and S. X. Ding, "Kernel classifier with adaptive structure and fixed memory for process diagnosis," AIChE J., vol.52, pp. 3515-3531, 2006.
    • (2006) AIChE J. , vol.52 , pp. 3515-3531
    • Wang, H.Q.1    Li, P.2    Gao, F.R.3    Song, Z.H.4    Ding, S.X.5
  • 14
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. J. Smola, and K. Müller, "Nonlinear component analysis as a kernel eigenvalue problem," Neural Comput., vol.10, pp. 1000-1016, 1998.
    • (1998) Neural Comput. , vol.10 , pp. 1000-1016
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.3
  • 15
    • 11144331636 scopus 로고    scopus 로고
    • Fault detection and identification of nonlinear processes based on kernel PCA
    • S. W. Choi, C. K. Lee, J. M. Lee, J. H. Park, and I. B. Lee, "Fault detection and identification of nonlinear processes based on kernel PCA," Chem. Intel. Lab. Syst., vol.75, pp. 55-67, 2005.
    • (2005) Chem. Intel. Lab. Syst. , vol.75 , pp. 55-67
    • Choi, S.W.1    Lee, C.K.2    Lee, J.M.3    Park, J.H.4    Lee, I.B.5
  • 16
    • 40449133038 scopus 로고    scopus 로고
    • Nonlinear multivariate quality estimation and prediction based on kernel partial least squares
    • X. Zhang, W. W. Yan, and H. L. Shao, "Nonlinear multivariate quality estimation and prediction based on kernel partial least squares," Ind. Eng. Chem. Res., vol.47, pp. 1120-1131, 2008.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 1120-1131
    • Zhang, X.1    Yan, W.W.2    Shao, H.L.3
  • 17
    • 36148959019 scopus 로고    scopus 로고
    • Improved kernel principal component analysis for fault detection
    • P. Cui, J. H. Li, and G. Z. Wang, "Improved kernel principal component analysis for fault detection," Expert Syst. Applicat., vol.34, pp. 1210-1219, 2008.
    • (2008) Expert Syst. Applicat. , vol.34 , pp. 1210-1219
    • Cui, P.1    Li, J.H.2    Wang, G.Z.3
  • 18
    • 14044252742 scopus 로고    scopus 로고
    • One-class support vector machines- an application in machine fault detection and classification
    • H. J. Shin, D. H. Eom, and S. S. Kim, "One-class support vector machines- an application in machine fault detection and classification," Comput. Ind. Eng., vol.48, pp. 395-408, 2005.
    • (2005) Comput. Ind. Eng. , vol.48 , pp. 395-408
    • Shin, H.J.1    Eom, D.H.2    Kim, S.S.3
  • 19
    • 0942266514 scopus 로고    scopus 로고
    • Support vector domain description
    • D. M. J. Tax and R. P. W. Duin, "Support vector domain description," Machine Learn., vol.54, pp. 45-66, 2004.
    • (2004) Machine Learn , vol.54 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 20
    • 52449116108 scopus 로고    scopus 로고
    • Fault detection using the k-Nearest neighbor rule for semiconductor manufacturing processes
    • Q. P. He and J. Wang, "Fault detection using the k-Nearest neighbor rule for semiconductor manufacturing processes," IEEE Trans. Semicond. Manuf., vol.20, pp. 345-354, 2007.
    • (2007) IEEE Trans. Semicond. Manuf. , vol.20 , pp. 345-354
    • He, Q.P.1    Wang, J.2
  • 21
    • 52649119206 scopus 로고    scopus 로고
    • Statistical- Based monitoring of multivariate non-Gaussian systems
    • X. Q. Liu, L. Xie, U. Kruger, T. Littler, and S. Q. Wang, "Statistical- Based monitoring of multivariate non-Gaussian systems," AIChE J., vol.54, pp. 2379-2391, 2008.
    • (2008) AIChE J. , vol.54 , pp. 2379-2391
    • Liu, X.Q.1    Xie, L.2    Kruger, U.3    Littler, T.4    Wang, S.Q.5
  • 22
    • 67249116501 scopus 로고    scopus 로고
    • A novel statistical-based monitoring approach for complex multivariate processes
    • Z. Q. Ge, L. Xie, and Z. H. Song, "A novel statistical-based monitoring approach for complex multivariate processes," Ind. Eng. Chem. Res., vol.48, pp. 4892-4898, 2009.
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 4892-4898
    • Ge, Z.Q.1    Xie, L.2    Song, Z.H.3
  • 23
    • 0037086546 scopus 로고    scopus 로고
    • Dimension reduction of process dynamic trends using independent component analysis
    • R. F. Li and X. Z. Wang, "Dimension reduction of process dynamic trends using independent component analysis," Comput. Chem. Eng., vol.26, pp. 467-473, 2002.
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 467-473
    • Li, R.F.1    Wang, X.Z.2
  • 24
    • 0037394190 scopus 로고    scopus 로고
    • Monitoring independent components for fault detection
    • M. Kano, S. Tanaka, S. Hasebe, I. Hashimoto, and H. Ohno, "Monitoring independent components for fault detection," AIChE J., vol.49, pp. 969-976, 2003.
    • (2003) AIChE J. , vol.49 , pp. 969-976
    • Kano, M.1    Tanaka, S.2    Hasebe, S.3    Hashimoto, I.4    Ohno, H.5
  • 25
    • 1942468131 scopus 로고    scopus 로고
    • Evolution of multivariate statistical process control: Application of independent component analysis and external analysis
    • M. Kano, S. Hasebe, I. Hashimoto, and H. Ohno, "Evolution of multivariate statistical process control: Application of independent component analysis and external analysis," Comput. Chem. Eng., vol.28, pp. 1157-1166, 2004.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1157-1166
    • Kano, M.1    Hasebe, S.2    Hashimoto, I.3    Ohno, H.4
  • 26
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • J. M. Lee, C. K. Yoo, and I. B. Lee, "Statistical process monitoring with independent component analysis," J. Process Contr., vol.14, pp. 467-485, 2004.
    • (2004) J. Process Contr. , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 27
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • J. M. Lee, S. J. Qin, and I. B. Lee, "Fault detection and diagnosis based on modified independent component analysis," AIChE J., vol.52, pp. 3501-3514, 2006.
    • (2006) AIChE J. , vol.52 , pp. 3501-3514
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3
  • 28
    • 34247109083 scopus 로고    scopus 로고
    • Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
    • Z. Q. Ge and Z. H. Song, "Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors," Ind. Eng. Chem. Res., vol.46, pp. 2054-2063, 2007.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 2054-2063
    • Ge, Z.Q.1    Song, Z.H.2
  • 29
    • 4944253785 scopus 로고    scopus 로고
    • Statistical process control charts for batch operations based on independent component analysis
    • H. Albazzaz and X. Z. Wang, "Statistical process control charts for batch operations based on independent component analysis," Ind. Eng. Chem. Res., vol.43, pp. 6731-6741, 2004.
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 6731-6741
    • Albazzaz, H.1    Wang, X.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.