메뉴 건너뛰기




Volumn 21, Issue 6, 2011, Pages 949-959

Batch process monitoring based on support vector data description method

Author keywords

Batch process monitoring; Multimode; Multiphase; Non Gaussian; Nonlinear; Support vector data description

Indexed keywords

BATCH PROCESS MONITORING; MULTIMODES; MULTIPHASE; NON-GAUSSIAN; NONLINEAR; SUPPORT VECTOR DATA DESCRIPTION;

EID: 79958136331     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2011.02.004     Document Type: Article
Times cited : (133)

References (46)
  • 1
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • P. Nomikos, and J.F. MacGregor Monitoring batch processes using multiway principal component analysis AIChE J. 44 1994 1361 1375
    • (1994) AIChE J. , vol.44 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.F.2
  • 2
    • 0028825273 scopus 로고
    • Multi-way partial least square in monitoring batch processes
    • P. Nomikos, and J.F. MacGregor Multi-way partial least square in monitoring batch processes Chem. Intell. Lab. Syst. 30 1995 97 108
    • (1995) Chem. Intell. Lab. Syst. , vol.30 , pp. 97-108
    • Nomikos, P.1    MacGregor, J.F.2
  • 4
    • 0037039540 scopus 로고    scopus 로고
    • On-line batch process monitoring using dynamic PCA and dynamic PLS models
    • J. Chen, and K.C. Liu On-line batch process monitoring using dynamic PCA and dynamic PLS models Chem. Eng. Sci. 57 2003 63 75
    • (2003) Chem. Eng. Sci. , vol.57 , pp. 63-75
    • Chen, J.1    Liu, K.C.2
  • 5
    • 0037282647 scopus 로고    scopus 로고
    • Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions
    • T. Kourti Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions J. Chemometr. 17 2003 93 109
    • (2003) J. Chemometr. , vol.17 , pp. 93-109
    • Kourti, T.1
  • 6
    • 21844434004 scopus 로고    scopus 로고
    • Fault detection properties of global, local and time evolving models for batch process monitoring
    • DOI 10.1016/j.jprocont.2005.02.001, PII S095915240500020X
    • H.J. Ramaker, E.N.M. van Sprang, J.A. Westerhuis, and A.K. Smilde Fault detection properties of global, local and time evolving models for batch process monitoring J. Process Control 15 2005 799 805 (Pubitemid 40952585)
    • (2005) Journal of Process Control , vol.15 , Issue.7 , pp. 799-805
    • Ramaker, H.-J.1    Van Sprang, E.N.M.2    Westerhuis, J.A.3    Smilde, A.K.4
  • 7
    • 33644990573 scopus 로고    scopus 로고
    • On-line batch process monitoring using MHMT-based MPCA
    • J.H. Chen, and H.H. Chen On-line batch process monitoring using MHMT-based MPCA Chem. Eng. Sci. 61 2006 3223 3239
    • (2006) Chem. Eng. Sci. , vol.61 , pp. 3223-3239
    • Chen, J.H.1    Chen, H.H.2
  • 9
    • 44749086556 scopus 로고    scopus 로고
    • Subspace identification for two-dimensional dynamic batch process statistical monitoring
    • Y. Yao, and F. Gao Subspace identification for two-dimensional dynamic batch process statistical monitoring Chem. Eng. Sci. 63 2008 3411 3418
    • (2008) Chem. Eng. Sci. , vol.63 , pp. 3411-3418
    • Yao, Y.1    Gao, F.2
  • 10
    • 36849039411 scopus 로고    scopus 로고
    • Dynamic model-based batch process monitoring
    • DOI 10.1016/j.ces.2007.09.046, PII S0009250907007518
    • S.W. Choi, A.J. Morris, and I.B. Lee Dynamic model-based batch process monitoring Chem. Eng. Sci. 63 2008 622 636 (Pubitemid 350235405)
    • (2008) Chemical Engineering Science , vol.63 , Issue.3 , pp. 622-636
    • Choi, S.W.1    Morris, J.2    Lee, I.-B.3
  • 11
    • 70349329819 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based multiphase batch process monitoring
    • J. Yu, and S.J. Qin Multiway Gaussian mixture model based multiphase batch process monitoring Ind. Eng. Chem. Res. 48 2009 8585 8594
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 8585-8594
    • Yu, J.1    Qin, S.J.2
  • 12
    • 65449169571 scopus 로고    scopus 로고
    • The best approaches in the on-line monitoring of batch processes based on PCA: Does the modeling structure matter
    • J. Camacho, J. Pico, and A. Ferrer The best approaches in the on-line monitoring of batch processes based on PCA: does the modeling structure matter Anal. Chim. Acta 642 2009 59 69
    • (2009) Anal. Chim. Acta , vol.642 , pp. 59-69
    • Camacho, J.1    Pico, J.2    Ferrer, A.3
  • 13
    • 77649189520 scopus 로고    scopus 로고
    • On-line multivariate statistic monitoring of batch processes using Gaussian mixture model
    • T. Chen, and J. Zhang On-line multivariate statistic monitoring of batch processes using Gaussian mixture model Comput. Chem. Eng. 34 2010 500 507
    • (2010) Comput. Chem. Eng. , vol.34 , pp. 500-507
    • Chen, T.1    Zhang, J.2
  • 14
    • 0036805179 scopus 로고    scopus 로고
    • Statistical monitoring of multistage, multiphase batch processes
    • DOI 10.1109/MCS.2002.1035216
    • C. Undey, and A. Cinar Statistical monitoring of multistage, multiphase batch processes IEEE Control Syst. Mag. 22 2002 40 52 (Pubitemid 35298308)
    • (2002) IEEE Control Systems Magazine , vol.22 , Issue.5 , pp. 40-52
    • Undey, C.1    Cinar, A.2
  • 15
    • 0037411801 scopus 로고    scopus 로고
    • Phase-based supervisory control for fermentation process development
    • K Muthuswamy, and R. Srinivasan Phase-based supervisory control for fermentation process development J. Process Control 13 2003 367 382
    • (2003) J. Process Control , vol.13 , pp. 367-382
    • Muthuswamy, K.1    Srinivasan, R.2
  • 16
    • 1042268071 scopus 로고    scopus 로고
    • A sub-PCA modeling and online monitoring strategy for batch processes
    • N.Y. Lu, F.R. Gao, and F.L. Wang A sub-PCA modeling and online monitoring strategy for batch processes AIChE J. 50 2004 255 259
    • (2004) AIChE J. , vol.50 , pp. 255-259
    • Lu, N.Y.1    Gao, F.R.2    Wang, F.L.3
  • 17
    • 19844382757 scopus 로고    scopus 로고
    • Stage-based process analysis and quality prediction for batch processes
    • N.Y. Lu, and F.R. Gao Stage-based process analysis and quality prediction for batch processes Ind. Eng. Chem. Res. 44 2005 3547 3555
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 3547-3555
    • Lu, N.Y.1    Gao, F.R.2
  • 18
    • 53649095499 scopus 로고    scopus 로고
    • Fault detection and classification for a two-stage batch process
    • J. Liu, and D.S.H. Wang Fault detection and classification for a two-stage batch process J. Chemometr. 22 2008 385 398
    • (2008) J. Chemometr. , vol.22 , pp. 385-398
    • Liu, J.1    Wang, D.S.H.2
  • 19
    • 57149098240 scopus 로고    scopus 로고
    • Multi-phase analysis framework for handling batch process data
    • J. Camacho, J. Pico, and A. Ferrer Multi-phase analysis framework for handling batch process data J. Chemometr. 22 2008 632 643
    • (2008) J. Chemometr. , vol.22 , pp. 632-643
    • Camacho, J.1    Pico, J.2    Ferrer, A.3
  • 20
    • 64849096132 scopus 로고    scopus 로고
    • Phase transition based batch process modeling online monitoring
    • Y. Yao, and F.R. Gao Phase transition based batch process modeling online monitoring J. Process Control 19 2009 816 826
    • (2009) J. Process Control , vol.19 , pp. 816-826
    • Yao, Y.1    Gao, F.R.2
  • 21
    • 70449094646 scopus 로고    scopus 로고
    • A survey on multistage/multiphase statistical modeling methods for batch processes
    • Y. Yao, and F.R. Gao A survey on multistage/multiphase statistical modeling methods for batch processes Annu. Rev. Control 33 2009 172 183
    • (2009) Annu. Rev. Control , vol.33 , pp. 172-183
    • Yao, Y.1    Gao, F.R.2
  • 22
    • 75249088043 scopus 로고    scopus 로고
    • Phase-based joint modeling and spectroscopy analysis for batch processes monitoring
    • C.H. Zhao, F.R. Gao, and F.L. Wang Phase-based joint modeling and spectroscopy analysis for batch processes monitoring Ind. Eng. Chem. Res. 49 2010 669 681
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 669-681
    • Zhao, C.H.1    Gao, F.R.2    Wang, F.L.3
  • 23
    • 2342615505 scopus 로고    scopus 로고
    • On-line monitoring of batch processes using multiway independent component analysis
    • DOI 10.1016/j.chemolab.2004.02.002, PII S0169743904000474
    • C.K. Yoo, J.M. Lee, P.A. Vanrolleghem, and I.B. Lee On-line monitoring of batch processes using multiway independent component analysis Chem. Intell. Lab. Syst. 71 2004 151 163 (Pubitemid 38591486)
    • (2004) Chemometrics and Intelligent Laboratory Systems , vol.71 , Issue.2 , pp. 151-163
    • Yoo, C.K.1    Lee, J.-M.2    Vanrolleghem, P.A.3    Lee, I.-B.4
  • 24
    • 4944253785 scopus 로고    scopus 로고
    • Statistical process control charts for batch operations based on independent component analysis
    • H. Albazzaz, and X.Z. Wang Statistical process control charts for batch operations based on independent component analysis Ind. Eng. Chem. Res. 43 2004 6731 6741 (Pubitemid 39332075)
    • (2004) Industrial and Engineering Chemistry Research , vol.43 , Issue.21 , pp. 6731-6741
    • Albazzaz, H.1    Wang, X.Z.2
  • 25
    • 33750148078 scopus 로고    scopus 로고
    • Introduction of dynamics to approach for batch process monitoring using independent component analysis
    • DOI 10.1080/00986440600829739, PII T684547774176214
    • H. Albazzaz, and X.Z. Wang Introduction of dynamics to an approach for batch process monitoring using independent component analysis Chem. Eng. Commun. 194 2007 218 233 (Pubitemid 44597019)
    • (2007) Chemical Engineering Communications , vol.194 , Issue.2 , pp. 218-233
    • Albazzaz, H.1    Wang, X.Z.2
  • 26
    • 34247109083 scopus 로고    scopus 로고
    • Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
    • Z.Q. Ge, and Z.H. Song Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors Ind. Eng. Chem. Res. 46 2007 2054 2063
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 2054-2063
    • Ge, Z.Q.1    Song, Z.H.2
  • 27
    • 58149527426 scopus 로고    scopus 로고
    • Multivariate monitoring for time-derivative non-Gaussian batch process
    • M.H. Kim, and C.K. Yoo Multivariate monitoring for time-derivative non-Gaussian batch process Korean J. Chem. Eng. 25 2008 947 954
    • (2008) Korean J. Chem. Eng. , vol.25 , pp. 947-954
    • Kim, M.H.1    Yoo, C.K.2
  • 28
    • 50649095932 scopus 로고    scopus 로고
    • Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
    • Z.Q. Ge, and Z.H. Song Online monitoring of nonlinear multiple mode processes based on adaptive local model approach Control Eng. Pract. 16 2008 1427 1437
    • (2008) Control Eng. Pract. , vol.16 , pp. 1427-1437
    • Ge, Z.Q.1    Song, Z.H.2
  • 29
    • 70350318936 scopus 로고    scopus 로고
    • Nonlinear batch process monitoring using phase-based kernel independent component analysis-principal component analysis
    • C.H. Zhao, F.R. Gao, and F.L. Wang Nonlinear batch process monitoring using phase-based kernel independent component analysis-principal component analysis Ind. Eng. Chem. Res. 48 2009 9163 9174
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 9163-9174
    • Zhao, C.H.1    Gao, F.R.2    Wang, F.L.3
  • 30
    • 61849101892 scopus 로고    scopus 로고
    • Multiway kernel independent component analysis based on feature samples for batch process monitoring
    • X.M. Tian, X.L. Zhang, X.G. Deng, and S. Chen Multiway kernel independent component analysis based on feature samples for batch process monitoring Neurocomputing 72 2009 1584 1596
    • (2009) Neurocomputing , vol.72 , pp. 1584-1596
    • Tian, X.M.1    Zhang, X.L.2    Deng, X.G.3    Chen, S.4
  • 31
    • 2442495227 scopus 로고    scopus 로고
    • Fault detection of batch processes using multiway kernel principal component analysis
    • J.M. Lee, C.K. Yoo, and I.B. Lee Fault detection of batch processes using multiway kernel principal component analysis Comput. Chem. Eng. 28 2004 1837 1847
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1837-1847
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 32
    • 33747316325 scopus 로고    scopus 로고
    • Nonlinear multivariate filtering and bioprocess monitoring for supervising nonlinear biological processes
    • C.K. Yoo, and I.B. Lee Nonlinear multivariate filtering and bioprocess monitoring for supervising nonlinear biological processes Process Biochem. 41 2006 1854 1863
    • (2006) Process Biochem. , vol.41 , pp. 1854-1863
    • Yoo, C.K.1    Lee, I.B.2
  • 33
    • 33745673605 scopus 로고    scopus 로고
    • Multivariate online monitoring of a full-scale biological anaerobic filter process using kernel-based algorithms
    • DOI 10.1021/ie050916k
    • D.S. Lee, M.W. Lee, S.H. Woo, Y.J. Kim, and J.M. Park Multivariate online monitoring of a full-scale biological anaerobic filter process using kernel-based algorithms Ind. Eng. Chem. Res. 45 2006 4335 4344 (Pubitemid 43966407)
    • (2006) Industrial and Engineering Chemistry Research , vol.45 , Issue.12 , pp. 4335-4344
    • Lee, D.S.1    Lee, M.W.2    Woo, S.H.3    Kim, Y.-J.4    Park, J.M.5
  • 34
    • 34447648726 scopus 로고    scopus 로고
    • Nonlinear biological batch process monitoring and fault identification based on kernel fisher discriminant analysis
    • DOI 10.1016/j.procbio.2007.05.016, PII S1359511307001468
    • X. Zhang, W.W. Yan, X. Zhao, and H.H. Shao Nonlinear biological batch process monitoring and fault identification based on kernel fisher discriminant analysis Process Biochem. 42 2007 1200 1210 (Pubitemid 47089064)
    • (2007) Process Biochemistry , vol.42 , Issue.8 , pp. 1200-1210
    • Zhang, X.1    Yan, W.2    Zhao, X.3    Shao, H.4
  • 35
    • 76549132623 scopus 로고    scopus 로고
    • Complex process quality prediction using modified kernel partial least squares
    • Y.W. Zhang, Y.D. Teng, and Y. Zhan Complex process quality prediction using modified kernel partial least squares Chem. Eng. Sci. 65 2010 2153 2158
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 2153-2158
    • Zhang, Y.W.1    Teng, Y.D.2    Zhan, Y.3
  • 36
    • 77951090351 scopus 로고    scopus 로고
    • On-line batch process monitoring using batch dynamic kernel principal component analysis
    • M.X. Jia, F. Chu, F.L. Wang, and W. Wang On-line batch process monitoring using batch dynamic kernel principal component analysis Chem. Intell. Lab. Syst. 101 2010 110 122
    • (2010) Chem. Intell. Lab. Syst. , vol.101 , pp. 110-122
    • Jia, M.X.1    Chu, F.2    Wang, F.L.3    Wang, W.4
  • 37
    • 0034661162 scopus 로고    scopus 로고
    • A fast training neural network and its updation for incipient fault detection and diagnosis
    • DOI 10.1016/S0098-1354(00)00434-8, PII S0098135400004348
    • R. Rengaswamy, and V. Venkatasubramanian A fast training neural network and its updation for incipient fault detection and diagnosis Comput. Chem. Eng. 24 2000 431 437 (Pubitemid 30608263)
    • (2000) Computers and Chemical Engineering , vol.24 , Issue.2-7 , pp. 431-437
    • Rengaswamy, R.1    Venkatasubramanian, V.2
  • 38
    • 24944509908 scopus 로고    scopus 로고
    • A self-organizing map method for optical fiber fault detection and location
    • Advances in Neural Networks - ISNN 2005: Second International Symposium on Neural Networks. Proceedings
    • Y. Chai, W.Z. Dai, M.Y. Guo, S.F. Li, and Z.F. Zhang A self-organizing map method for optical fiber fault detection and location Adv. Neural Netw.: Lect. Notes Comput. Sci. 3498 2005 470 475 (Pubitemid 41315130)
    • (2005) Lecture Notes in Computer Science , vol.3498 , Issue.3 , pp. 470-475
    • Chai, Y.1    Dai, W.2    Guo, M.3    Li, S.4    Zhang, Z.5
  • 39
    • 40249098835 scopus 로고    scopus 로고
    • Fault detection in chemical processes using discriminant analysis and control chart
    • DOI 10.1252/jcej.07WE088
    • X.D. Pei, Y. Yamashita, M. Yoshida, and S. Matsumoto Fault detection in chemical processes using discriminant analysis and control chart J. Chem. Eng. Jpn. 41 2008 25 31 (Pubitemid 351330850)
    • (2008) Journal of Chemical Engineering of Japan , vol.41 , Issue.1 , pp. 25-31
    • Pei, X.1    Yamashita, Y.2    Yoshida, M.3    Matsumoto, S.4
  • 40
    • 71349083204 scopus 로고    scopus 로고
    • Optimal MLP neural network classifier for fault detection of three phase induction motor
    • V.N. Ghate, and S.V. Dudul Optimal MLP neural network classifier for fault detection of three phase induction motor Exp. Syst. Appl. 37 2010 3468 3481
    • (2010) Exp. Syst. Appl. , vol.37 , pp. 3468-3481
    • Ghate, V.N.1    Dudul, S.V.2
  • 41
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • DOI 10.1016/S0167-8655(99)00087-2
    • D.M.J. Tax, and R.P.W. Duin Support vector domain description Pattern Recongn. Lett. 20 1999 1191 1199 (Pubitemid 32261897)
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1191-1199
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 42
    • 0942266514 scopus 로고    scopus 로고
    • Support vector domain description
    • D.M.J. Tax, and R.P.W. Duin Support vector domain description Mach. Learn. 54 2004 45 66
    • (2004) Mach. Learn. , vol.54 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 43
    • 52649119206 scopus 로고    scopus 로고
    • Statistical-based monitoring of multivariate non-Gaussian systems
    • X.Q. Liu, L. Xie, U. Kruger, T. Littler, and S.Q. Wang Statistical-based monitoring of multivariate non-Gaussian systems AIChE J. 54 2008 2379 2391
    • (2008) AIChE J. , vol.54 , pp. 2379-2391
    • Liu, X.Q.1    Xie, L.2    Kruger, U.3    Littler, T.4    Wang, S.Q.5
  • 44
    • 67249116501 scopus 로고    scopus 로고
    • A novel statistical-based monitoring approach for complex multivariate processes
    • Z.Q. Ge, L. Xie, and Z.H. Song A novel statistical-based monitoring approach for complex multivariate processes Ind. Eng. Chem. Res. 48 2009 4892 4898
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 4892-4898
    • Ge, Z.Q.1    Xie, L.2    Song, Z.H.3
  • 45
    • 71849088402 scopus 로고    scopus 로고
    • Sensor fault identification and isolation for multivariate non-Gaussian processes
    • Z.Q. Ge, L. Xie, U. Kruger, L. Lamont, Z.H. Song, and S.Q. Wang Sensor fault identification and isolation for multivariate non-Gaussian processes J. Process Control 19 2009 1707 1715
    • (2009) J. Process Control , vol.19 , pp. 1707-1715
    • Ge, Z.Q.1    Xie, L.2    Kruger, U.3    Lamont, L.4    Song, Z.H.5    Wang, S.Q.6
  • 46
    • 0001067412 scopus 로고    scopus 로고
    • A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process
    • B.M. Wise, N.B. Gallagher, S.W. Butler, D.D. White Jr., and G.G. Barna A comparison of principal component analysis, multiway principal component analysis, trilinear decomposition and parallel factor analysis for fault detection in a semiconductor etch process J. Chemometr. 13 1999 379 396
    • (1999) J. Chemometr. , vol.13 , pp. 379-396
    • Wise, B.M.1    Gallagher, N.B.2    Butler, S.W.3    White Jr., D.D.4    Barna, G.G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.