메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 3071-3096

In all likelihood, deep belief is not enough

Author keywords

Deep belief network; Likelihood estimation; Natural image statistics; Potential log likelihood; Restricted Boltzmann machine

Indexed keywords

COMPLEX DATA; COMPUTATIONAL NEUROSCIENCE; CONSISTENT ESTIMATORS; LIKELIHOOD ESTIMATION; LOG LIKELIHOOD; MIXTURE MODEL; NATURAL IMAGE STATISTICS; NATURAL IMAGES; QUALITATIVE ANALYSIS; RESTRICTED BOLTZMANN MACHINE; STATISTICAL MODELS;

EID: 84855395193     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (29)

References (44)
  • 3
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • P. Comon. Independent component analysis, a new concept? Signal processing, 36(3):287-314, 1994.
    • (1994) Signal processing , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 4
    • 65349134100 scopus 로고    scopus 로고
    • Natural image coding in V1: How much use is orientation selectivity?
    • J. Eichhorn, F. Sinz, and M. Bethge. Natural image coding in V1: How much use is orientation selectivity? PLoS Computational Biology, 5(4), 2009.
    • (2009) PLoS Computational Biology , vol.5 , pp. 4
    • Eichhorn, J.1    Sinz, F.2    Bethge, M.3
  • 5
    • 0025718412 scopus 로고
    • Distributed hierarchical processing in the primate cerebral cortex
    • D. J. Felleman and D. C. van Essen. Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1991.
    • (1991) Cerebral Cortex
    • Felleman, D.J.1    Van Essen, D.C.2
  • 6
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 1980.
    • (1980) Biological Cybernetics
    • Fukushima, K.1
  • 9
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 10
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • DOI 10.1126/science.1127647
    • G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313:504-507, Jan 2006. (Pubitemid 44148451)
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 11
    • 0029652445 scopus 로고
    • The "wake-sleep" algorithm for unsupervised neural networks
    • Jan
    • G. E. Hinton, P. Dayan, B. Frey, and R. Neal. The "wake-sleep" algorithm for unsupervised neural networks. Science, Jan 1995.
    • (1995) Science
    • Hinton, G.E.1    Dayan, P.2    Frey, B.3    Neal, R.4
  • 12
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • DOI 10.1162/neco.2006.18.7.1527
    • G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527-1554, Jul 2006. (Pubitemid 44024729)
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 14
    • 58149234993 scopus 로고    scopus 로고
    • Emergence of complex cell properties by learning to generalize in natural scenes
    • Y. Karklin and M. S. Lewicki. Emergence of complex cell properties by learning to generalize in natural scenes. Nature, 2009.
    • (2009) Nature
    • Karklin, Y.1    Lewicki, M.S.2
  • 23
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • DOI 10.1023/A:1008923215028
    • R. M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125-139, Jan 2001. (Pubitemid 33638185)
    • (2001) Statistics and Computing , vol.11 , Issue.2 , pp. 125-139
    • Neal, R.M.1
  • 30
    • 45749110924 scopus 로고    scopus 로고
    • Representational power of restricted boltzmann machines and deep belief networks
    • N. Le Roux and Y. Bengio. Representational power of restricted boltzmann machines and deep belief networks. Neural Computation, 20(6):1631-1649, 2008.
    • (2008) Neural Computation , vol.20 , Issue.6 , pp. 1631-1649
    • Le Roux, N.1    Bengio, Y.2
  • 32
    • 78651276374 scopus 로고    scopus 로고
    • PhD thesis, Dept. of Computer Science, University of Toronto, Sep
    • R. Salakhutdinov. Learning Deep Generative Models. PhD thesis, Dept. of Computer Science, University of Toronto, Sep 2009.
    • (2009) Learning Deep Generative Models
    • Salakhutdinov, R.1
  • 38
    • 55749105263 scopus 로고    scopus 로고
    • Deep, narrow sigmoid belief networks are universal approximators
    • Nov
    • I. Sutskever and G. E. Hinton. Deep, narrow sigmoid belief networks are universal approximators. Neural Computation, 20(11):2629-2636, Nov 2008.
    • (2008) Neural Computation , vol.20 , Issue.11 , pp. 2629-2636
    • Sutskever, I.1    Hinton, G.E.2
  • 41
    • 0032492432 scopus 로고    scopus 로고
    • Independent component filters of natural images compared with simple cells in primary visual cortex
    • Mar
    • J. H. van Hateren and A. van der Schaaf. Independent component filters of natural images compared with simple cells in primary visual cortex. Proceedings of the Royal Society B: Biological Sciences, 265(1394), Mar 1998.
    • (1998) Proceedings of the Royal Society B: Biological Sciences , vol.265 , pp. 1394
    • Van Hateren, J.H.1    Van Der Schaaf, A.2
  • 44
    • 0000355193 scopus 로고
    • Parametric inference for imperfectly observed gibbsian fields
    • L. Younes. Parametric inference for imperfectly observed gibbsian fields. Probability Theory and Related Fields, 1989.
    • (1989) Probability Theory and Related Fields
    • Younes, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.