-
1
-
-
55549118196
-
Heterologous expression of d-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose
-
Akinterinwa O., Cirino P.C. Heterologous expression of d-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab. Eng. 2009, 11:48-55.
-
(2009)
Metab. Eng.
, vol.11
, pp. 48-55
-
-
Akinterinwa, O.1
Cirino, P.C.2
-
3
-
-
0026512939
-
Multifunctional yeast high-copy number shuttle vectors
-
Christianson T.W., Sikorski R.S., Dante M., Shero J.H., Hieter P. Multifunctional yeast high-copy number shuttle vectors. Gene 1992, 110:119-122.
-
(1992)
Gene
, vol.110
, pp. 119-122
-
-
Christianson, T.W.1
Sikorski, R.S.2
Dante, M.3
Shero, J.H.4
Hieter, P.5
-
4
-
-
0037182234
-
Stable expression of xylose reductase gene enhances xylitol production in recombinant Saccharomyces cerevisiae
-
Chung Y.S., Kim M.D., Lee W.J., Ryu Y.W., Kim J.H., Seo J.H. Stable expression of xylose reductase gene enhances xylitol production in recombinant Saccharomyces cerevisiae. Enzyme Microb. Technol. 2002, 30:809-816.
-
(2002)
Enzyme Microb. Technol.
, vol.30
, pp. 809-816
-
-
Chung, Y.S.1
Kim, M.D.2
Lee, W.J.3
Ryu, Y.W.4
Kim, J.H.5
Seo, J.H.6
-
5
-
-
77957347059
-
Cellodextrin transport in yeast for improved biofuel production
-
Galazka J.M., Tian C., Beeson W.T., Martinez B., Glass N.L., Cate J.H.D. Cellodextrin transport in yeast for improved biofuel production. Science 2010, 330:84.
-
(2010)
Science
, vol.330
, pp. 84
-
-
Galazka, J.M.1
Tian, C.2
Beeson, W.T.3
Martinez, B.4
Glass, N.L.5
Cate, J.H.D.6
-
6
-
-
33846781800
-
A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol
-
Granstrom T.B., Izumori K., Leisola M. A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl. Microbiol. Biotechnol. 2007, 74:273-276.
-
(2007)
Appl. Microbiol. Biotechnol.
, vol.74
, pp. 273-276
-
-
Granstrom, T.B.1
Izumori, K.2
Leisola, M.3
-
7
-
-
79551670374
-
Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation
-
Ha S.J., Galazka J.M., Kim S.R., Choi J.H., Yang X., Seo J.H., Louise Glass N., Cate J.H.D., Jin Y.S. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. USA 2011, 108:504-509.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 504-509
-
-
Ha, S.J.1
Galazka, J.M.2
Kim, S.R.3
Choi, J.H.4
Yang, X.5
Seo, J.H.6
Louise Glass, N.7
Cate, J.H.D.8
Jin, Y.S.9
-
8
-
-
0028061721
-
The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYL1 gene
-
Hallborn J., Meinander N., Hahn-Hägerdal B., Gorwa M.F., Pentilla M., Keranen S. The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYL1 gene. Appl. Microbiol. Biotechnol. 1994, 42:326-333.
-
(1994)
Appl. Microbiol. Biotechnol.
, vol.42
, pp. 326-333
-
-
Hallborn, J.1
Meinander, N.2
Hahn-Hägerdal, B.3
Gorwa, M.F.4
Pentilla, M.5
Keranen, S.6
-
9
-
-
15444363904
-
Xylitol production by recombinant Saccharomyces cerevisiae
-
Hallborn J., Walfridsson M., Airaksinen U., Ojamo H., Hahn-Hägerdal B., Penttila M., Keranen S. Xylitol production by recombinant Saccharomyces cerevisiae. Nat. Biotechnol. 1991, 9:1090-1095.
-
(1991)
Nat. Biotechnol.
, vol.9
, pp. 1090-1095
-
-
Hallborn, J.1
Walfridsson, M.2
Airaksinen, U.3
Ojamo, H.4
Hahn-Hägerdal, B.5
Penttila, M.6
Keranen, S.7
-
10
-
-
0026548118
-
A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae
-
Hosaka K., Nikawa J., Kodaki T., Yamashita S. A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J. Biochem. 1992, 111:352-358.
-
(1992)
J. Biochem.
, vol.111
, pp. 352-358
-
-
Hosaka, K.1
Nikawa, J.2
Kodaki, T.3
Yamashita, S.4
-
12
-
-
84857450275
-
Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis
-
Jeon W.Y., Yoon B.H., Ko B.S., Shim W.Y., Kim J.H. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess. Biosyst. Eng. 2012, 35:191-198.
-
(2012)
Bioprocess. Biosyst. Eng.
, vol.35
, pp. 191-198
-
-
Jeon, W.Y.1
Yoon, B.H.2
Ko, B.S.3
Shim, W.Y.4
Kim, J.H.5
-
13
-
-
0038748280
-
Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae
-
Jin Y.-S., Jeffries T. Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl. Biochem. Biotechnol 2003, 106:277-285.
-
(2003)
Appl. Biochem. Biotechnol
, vol.106
, pp. 277-285
-
-
Jin, Y.-S.1
Jeffries, T.2
-
14
-
-
33750623278
-
Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae
-
Kwon D.H., Kim M.D., Lee T.H., Oh Y.J., Ryu Y.W., Seo J.H. Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae. J. Mol. Catal. B: Enzym. 2006, 43:86-89.
-
(2006)
J. Mol. Catal. B: Enzym.
, vol.43
, pp. 86-89
-
-
Kwon, D.H.1
Kim, M.D.2
Lee, T.H.3
Oh, Y.J.4
Ryu, Y.W.5
Seo, J.H.6
-
15
-
-
0033941131
-
Characterization of two-substrate fermentation processes for xylitol production using recombinant Saccharomyces cerevisiae containing xylose reductase gene
-
Lee W.J., Ryu Y.W., Seo J.H. Characterization of two-substrate fermentation processes for xylitol production using recombinant Saccharomyces cerevisiae containing xylose reductase gene. Process Biochem 2000, 35:1199-1203.
-
(2000)
Process Biochem
, vol.35
, pp. 1199-1203
-
-
Lee, W.J.1
Ryu, Y.W.2
Seo, J.H.3
-
16
-
-
0026507266
-
Dietary prevention of dental caries by xylitol-clinical effectiveness and safety
-
Makinen K. Dietary prevention of dental caries by xylitol-clinical effectiveness and safety. J. Appl. Nutr. 1992, 44:16-28.
-
(1992)
J. Appl. Nutr.
, vol.44
, pp. 16-28
-
-
Makinen, K.1
-
17
-
-
0343852844
-
Fed-batch xylitol production with two recombinant Saccharomyces cerevisiae strains expressing XYL1 at different levels, using glucose as a cosubstrate: a comparison of production parameters and strain stability
-
Meinander N.Q., Hahn-Hägerdal B. Fed-batch xylitol production with two recombinant Saccharomyces cerevisiae strains expressing XYL1 at different levels, using glucose as a cosubstrate: a comparison of production parameters and strain stability. Biotechnol. Bioeng. 1997, 54:391-399.
-
(1997)
Biotechnol. Bioeng.
, vol.54
, pp. 391-399
-
-
Meinander, N.Q.1
Hahn-Hägerdal, B.2
-
18
-
-
0003948189
-
Process for making xylitol
-
US Patent 4,008,285.
-
Melaja, A.J., Hamalainen, L., 1977. Process for making xylitol. US Patent 4,008,285.
-
(1977)
-
-
Melaja, A.J.1
Hamalainen, L.2
-
19
-
-
27744558510
-
Sources of NADPH in yeast vary with carbon source
-
Minard K.I., McAlister-Henn L. Sources of NADPH in yeast vary with carbon source. J. Biol. Chem. 2005, 280:39890-39896.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 39890-39896
-
-
Minard, K.I.1
McAlister-Henn, L.2
-
20
-
-
65549106475
-
Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae
-
Miyagi H., Kawai S., Murata K. Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 2008, 284:7553-7560.
-
(2008)
J. Biol. Chem.
, vol.284
, pp. 7553-7560
-
-
Miyagi, H.1
Kawai, S.2
Murata, K.3
-
21
-
-
77955658243
-
Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars
-
Nair N.U., Zhao H. Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars. Metab. Eng. 2010, 12:462-468.
-
(2010)
Metab. Eng.
, vol.12
, pp. 462-468
-
-
Nair, N.U.1
Zhao, H.2
-
22
-
-
0029138293
-
Processes of fermentative production of xylitol-a sugar substitute
-
Nigam P., Singh D. Processes of fermentative production of xylitol-a sugar substitute. Process Biochem. 1995, 30:117-124.
-
(1995)
Process Biochem.
, vol.30
, pp. 117-124
-
-
Nigam, P.1
Singh, D.2
-
23
-
-
84863180530
-
Effects of overexpression of acetaldehyde dehydrogenase 6 and acetyl-CoA synthetase 1 on xylitol production in recombinant Saccharomyces cerevisiae
-
Oh E.-J., Bae Y.-H., Kim K.-H., Park Y.-C., Seo J.-H. Effects of overexpression of acetaldehyde dehydrogenase 6 and acetyl-CoA synthetase 1 on xylitol production in recombinant Saccharomyces cerevisiae. Biocatal. Agric. Biotechnol. 2012, 1:15-19.
-
(2012)
Biocatal. Agric. Biotechnol.
, vol.1
, pp. 15-19
-
-
Oh, E.-J.1
Bae, Y.-H.2
Kim, K.-H.3
Park, Y.-C.4
Seo, J.-H.5
-
24
-
-
34249324465
-
Dual modulation of glucose 6-phosphate metabolism to increase NADPH-dependent xylitol production in recombinant Saccharomyces cerevisiae
-
Oh Y.-J., Lee T.-H., Lee S.-H., Oh E.-J., Ryu Y.-W., Kim M.-D., Seo J.-H. Dual modulation of glucose 6-phosphate metabolism to increase NADPH-dependent xylitol production in recombinant Saccharomyces cerevisiae. J. Mol. Catal. B: Enzym. 2007, 47:37-42.
-
(2007)
J. Mol. Catal. B: Enzym.
, vol.47
, pp. 37-42
-
-
Oh, Y.-J.1
Lee, T.-H.2
Lee, S.-H.3
Oh, E.-J.4
Ryu, Y.-W.5
Kim, M.-D.6
Seo, J.-H.7
-
25
-
-
33947192191
-
Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases
-
Saloheimo A., Rauta J., Stasyk O.V., Sibirny A.A., Penttilä M., Ruohonen L. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl. Microbiol. Biotechnol. 2007, 74:1041-1052.
-
(2007)
Appl. Microbiol. Biotechnol.
, vol.74
, pp. 1041-1052
-
-
Saloheimo, A.1
Rauta, J.2
Stasyk, O.V.3
Sibirny, A.A.4
Penttilä, M.5
Ruohonen, L.6
-
26
-
-
80052037221
-
Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae
-
Parachin N.S., Bergdahl B., van Niel E.W.J., Gorwa-Grauslund M.F. Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab. Eng. 2011, 13:508-517.
-
(2011)
Metab. Eng.
, vol.13
, pp. 508-517
-
-
Parachin, N.S.1
Bergdahl, B.2
van Niel, E.W.J.3
Gorwa-Grauslund, M.F.4
-
27
-
-
84855419323
-
Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomycescerevisiae
-
Peng B., Shen Y., Li X., Chen X., Hou J., Bao X. Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomycescerevisiae. Metab. Eng. 2012, 14:9-18.
-
(2012)
Metab. Eng.
, vol.14
, pp. 9-18
-
-
Peng, B.1
Shen, Y.2
Li, X.3
Chen, X.4
Hou, J.5
Bao, X.6
-
28
-
-
0026778048
-
Foreign gene expression in yeast: a review
-
Romanos M.A., Scorer C.A., Clare J.J. Foreign gene expression in yeast: a review. Yeast 1992, 8:423-488.
-
(1992)
Yeast
, vol.8
, pp. 423-488
-
-
Romanos, M.A.1
Scorer, C.A.2
Clare, J.J.3
-
29
-
-
33644941225
-
System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae
-
Taxis C., Knop M. System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. Biotechniques 2006, 40:73-78.
-
(2006)
Biotechniques
, vol.40
, pp. 73-78
-
-
Taxis, C.1
Knop, M.2
-
30
-
-
0026512705
-
Glucose repression in the yeast Saccharomyces cerevisiae
-
Trumbly R. Glucose repression in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 1992, 6:15-21.
-
(1992)
Mol. Microbiol.
, vol.6
, pp. 15-21
-
-
Trumbly, R.1
-
31
-
-
57049166496
-
Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose
-
Van Vleet J.H., Jeffries T.W., Olsson L. Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose. Metab. Eng. 2008, 10:360-369.
-
(2008)
Metab. Eng.
, vol.10
, pp. 360-369
-
-
Van Vleet, J.H.1
Jeffries, T.W.2
Olsson, L.3
-
32
-
-
0021959310
-
Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis
-
Verduyn C., Van Kleef R., Frank J., Schreuder H., Van Dijken J.P., Scheffers W.A. Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem. J. 1985, 226:669-677.
-
(1985)
Biochem. J.
, vol.226
, pp. 669-677
-
-
Verduyn, C.1
Van Kleef, R.2
Frank, J.3
Schreuder, H.4
Van Dijken, J.P.5
Scheffers, W.A.6
-
33
-
-
26944484678
-
Top Value Added Chemicals from Biomass
-
Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Pacific Northwest National Laboratory, National Renewable Energy Laboratory and Department of Energy, Washington, DC
-
Werpy, T., Petersen, G., Aden, A., Bozell, J., Holladay, J., White, J., Manheim, A., Elliot, D., Lasure, L., Jones, S., Gerber, M., Ibsen, K., Lumberg, L., Kelley, S., 2004. Top Value Added Chemicals from Biomass, vol. 1: Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Pacific Northwest National Laboratory, National Renewable Energy Laboratory and Department of Energy, Washington, DC, 76 pp.
-
(2004)
, vol.1
, pp. 76
-
-
Werpy, T.1
Petersen, G.2
Aden, A.3
Bozell, J.4
Holladay, J.5
White, J.6
Manheim, A.7
Elliot, D.8
Lasure, L.9
Jones, S.10
Gerber, M.11
Ibsen, K.12
Lumberg, L.13
Kelley, S.14
-
34
-
-
33847805850
-
Hydrogenation of xylose to xylitol
-
Wisniak J., Hershkowitz M., Leibowitz R., Stein S. Hydrogenation of xylose to xylitol. Ind. Eng. Chem. Res. 1974, 13:75-79.
-
(1974)
Ind. Eng. Chem. Res.
, vol.13
, pp. 75-79
-
-
Wisniak, J.1
Hershkowitz, M.2
Leibowitz, R.3
Stein, S.4
-
35
-
-
79958211835
-
Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host
-
Young E.M., Poucher A., Comer A., Bailey A., Alper H.S. Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Appl. Environ. Microbiol. 2011, 77:3311-3319.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, pp. 3311-3319
-
-
Young, E.M.1
Poucher, A.2
Comer, A.3
Bailey, A.4
Alper, H.S.5
|