메뉴 건너뛰기




Volumn 36, Issue 2, 2013, Pages 154-166

Implications of microRNAs in the pathogenesis of diabetes

Author keywords

Diabetes; Insulin resistance; Metabolic disease; MicroRNA

Indexed keywords

ARGONAUTE PROTEIN; GLUCOSE TRANSPORTER 4; INTERLEUKIN 1BETA; MICRORNA; MICRORNA 1; MICRORNA 107; MICRORNA 122; MICRORNA 124; MICRORNA 126; MICRORNA 143; MICRORNA 144; MICRORNA 146A; MICRORNA 15A; MICRORNA 20B; MICRORNA 222; MICRORNA 223; MICRORNA 24; MICRORNA 29; MICRORNA 29A; MICRORNA 29B; MICRORNA 33; MICRORNA 34A; MICRORNA 370; MICRORNA 375; MITOGEN ACTIVATED PROTEIN KINASE 7; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA 2; SIRTUIN 1; SNARE PROTEIN; SYNAPTOBREVIN 2; TUMOR NECROSIS FACTOR ALPHA; UNCLASSIFIED DRUG;

EID: 84879505852     PISSN: 02536269     EISSN: 19763786     Source Type: Journal    
DOI: 10.1007/s12272-013-0017-6     Document Type: Review
Times cited : (38)

References (110)
  • 1
    • 64549163250 scopus 로고    scopus 로고
    • The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas
    • 19343226
    • Avnit-Sagi, T.; L. Kantorovich, S. Kredo-Russo, E. Hornstein, and M.D. Walker. 2009. The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS One 4: e5033.
    • (2009) PLoS One , vol.4 , pp. 5033
    • Avnit-Sagi, T.1    Kantorovich, L.2    Kredo-Russo, S.3    Hornstein, E.4    Walker, M.D.5
  • 3
    • 70350433377 scopus 로고    scopus 로고
    • Function of microRNA-375 and microRNA-124a in pancreas and brain
    • 20102393 1:CAS:528:DC%2BD1MXhsVSmsL3L
    • Baroukh, N.N.; and E. Van Obberghen. 2009. Function of microRNA-375 and microRNA-124a in pancreas and brain. The FEBS Journal 276: 6509-6521.
    • (2009) The FEBS Journal , vol.276 , pp. 6509-6521
    • Baroukh, N.N.1    Van Obberghen, E.2
  • 4
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: Target recognition and regulatory functions
    • 19167326 1:CAS:528:DC%2BD1MXhs1Kiuro%3D
    • Bartel, D.P. 2009. MicroRNAs: Target recognition and regulatory functions. Cell 136: 215-233.
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 6
    • 80455128548 scopus 로고    scopus 로고
    • Insulin resistance, hyperglycemia, and atherosclerosis
    • 22055501 1:CAS:528:DC%2BC3MXhsVaqtLfK
    • Bornfeldt, K.E.; and I. Tabas. 2011. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metabolism 14: 575-585.
    • (2011) Cell Metabolism , vol.14 , pp. 575-585
    • Bornfeldt, K.E.1    Tabas, I.2
  • 9
    • 23844523406 scopus 로고    scopus 로고
    • MiR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1
    • 17179747 1:CAS:528:DC%2BD2MXlsFSrt74%3D
    • Chang, J.; E. Nicolas, D. Marks, C. Sander, A. Lerro, M.A. Buendia, C. Xu, W.S. Mason, T. Moloshok, R. Bort, K.S. Zaret, and J.M. Taylor. 2004. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biology 1: 106-113.
    • (2004) RNA Biology , vol.1 , pp. 106-113
    • Chang, J.1    Nicolas, E.2    Marks, D.3    Sander, C.4    Lerro, A.5    Buendia, M.A.6    Xu, C.7    Mason, W.S.8    Moloshok, T.9    Bort, R.10    Zaret, K.S.11    Taylor, J.M.12
  • 11
    • 0347916882 scopus 로고    scopus 로고
    • The Rab-binding protein Noc2 is associated with insulin-containing secretory granules and is essential for pancreatic beta-cell exocytosis
    • 14593078 1:CAS:528:DC%2BD2cXjsVCitw%3D%3D
    • Cheviet, S.; T. Coppola, L.P. Haynes, R.D. Burgoyne, and R. Regazzi. 2004. The Rab-binding protein Noc2 is associated with insulin-containing secretory granules and is essential for pancreatic beta-cell exocytosis. Molecular Endocrinology 18: 117-126.
    • (2004) Molecular Endocrinology , vol.18 , pp. 117-126
    • Cheviet, S.1    Coppola, T.2    Haynes, L.P.3    Burgoyne, R.D.4    Regazzi, R.5
  • 12
    • 80755148728 scopus 로고    scopus 로고
    • Artificial pancreas: Past, present, future
    • 22025773 1:CAS:528:DC%2BC3MXhsVyisrnL
    • Cobelli, C.; E. Renard, and B. Kovatchev. 2011. Artificial pancreas: Past, present, future. Diabetes 60: 2672-2682.
    • (2011) Diabetes , vol.60 , pp. 2672-2682
    • Cobelli, C.1    Renard, E.2    Kovatchev, B.3
  • 13
    • 29644432901 scopus 로고    scopus 로고
    • MicroRNAs and endocrine biology
    • 16423811 1:CAS:528:DC%2BD28XitlOrsQ%3D%3D
    • Cuellar, T.L.; and M.T. Mcmanus. 2005. MicroRNAs and endocrine biology. The Journal of Endocrinology 187: 327-332.
    • (2005) The Journal of Endocrinology , vol.187 , pp. 327-332
    • Cuellar, T.L.1    McManus, M.T.2
  • 15
    • 9144224451 scopus 로고    scopus 로고
    • Processing of primary microRNAs by the Microprocessor complex
    • 15531879 1:CAS:528:DC%2BD2cXpsF2gtrY%3D
    • Denli, A.M.; B.B. Tops, R.H. Plasterk, R.F. Ketting, and G.J. Hannon. 2004. Processing of primary microRNAs by the Microprocessor complex. Nature 432: 231-235.
    • (2004) Nature , vol.432 , pp. 231-235
    • Denli, A.M.1    Tops, B.B.2    Plasterk, R.H.3    Ketting, R.F.4    Hannon, G.J.5
  • 17
    • 73449086958 scopus 로고    scopus 로고
    • Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions
    • 19933931 1:CAS:528:DC%2BD1MXhsVOhtrfF
    • Elia, L.; R. Contu, M. Quintavalle, F. Varrone, C. Chimenti, M.A. Russo, V. Cimino, L. De Marinis, A. Frustaci, D. Catalucci, and G. Condorelli. 2009. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120: 2377-2385.
    • (2009) Circulation , vol.120 , pp. 2377-2385
    • Elia, L.1    Contu, R.2    Quintavalle, M.3    Varrone, F.4    Chimenti, C.5    Russo, M.A.6    Cimino, V.7    De Marinis, L.8    Frustaci, A.9    Catalucci, D.10    Condorelli, G.11
  • 25
    • 71049132736 scopus 로고    scopus 로고
    • The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway
    • 19720801 1:CAS:528:DC%2BD1MXhsVCht77P
    • Granjon, A.; M.P. Gustin, J. Rieusset, E. Lefai, E. Meugnier, I. Guller, C. Cerutti, C. Paultre, E. Disse, R. Rabasa-Lhoret, M. Laville, H. Vidal, and S. Rome. 2009. The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes 58: 2555-2564.
    • (2009) Diabetes , vol.58 , pp. 2555-2564
    • Granjon, A.1    Gustin, M.P.2    Rieusset, J.3    Lefai, E.4    Meugnier, E.5    Guller, I.6    Cerutti, C.7    Paultre, C.8    Disse, E.9    Rabasa-Lhoret, R.10    Laville, M.11    Vidal, H.12    Rome, S.13
  • 26
    • 27744537851 scopus 로고    scopus 로고
    • Human RISC couples microRNA biogenesis and posttranscriptional gene silencing
    • 16271387 1:CAS:528:DC%2BD2MXht1yktrjN
    • Gregory, R.I.; T.P. Chendrimada, N. Cooch, and R. Shiekhattar. 2005. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123: 631-640.
    • (2005) Cell , vol.123 , pp. 631-640
    • Gregory, R.I.1    Chendrimada, T.P.2    Cooch, N.3    Shiekhattar, R.4
  • 29
    • 52249096359 scopus 로고    scopus 로고
    • The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers
    • 1:CAS:528:DC%2BD1cXhtFKms7vF
    • Guo, C.; J.F. Sah, L. Beard, J.K. Willson, S.D. Markowitz, and K. Guda. 2008. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes, Chromosomes and Cancer 47: 939-946.
    • (2008) Genes, Chromosomes and Cancer , vol.47 , pp. 939-946
    • Guo, C.1    Sah, J.F.2    Beard, L.3    Willson, J.K.4    Markowitz, S.D.5    Guda, K.6
  • 30
    • 10644234841 scopus 로고    scopus 로고
    • The Drosha-DGCR8 complex in primary microRNA processing
    • 1:CAS:528:DC%2BD2MXhtFaguw%3D%3D
    • Han, J.; Y. Lee, K.H. Yeom, Y.K. Kim, H. Jin, and V.N. Kim. 2004. The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development 18: 3016-3027.
    • (2004) Genes & Development , vol.18 , pp. 3016-3027
    • Han, J.1    Lee, Y.2    Yeom, K.H.3    Kim, Y.K.4    Jin, H.5    Kim, V.N.6
  • 32
    • 35649011441 scopus 로고    scopus 로고
    • Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes
    • 17652184 1:CAS:528:DC%2BD2sXht1ynsrfL
    • He, A.; L. Zhu, N. Gupta, Y. Chang, and F. Fang. 2007. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Molecular Endocrinology 21: 2785-2794.
    • (2007) Molecular Endocrinology , vol.21 , pp. 2785-2794
    • He, A.1    Zhu, L.2    Gupta, N.3    Chang, Y.4    Fang, F.5
  • 33
    • 50249172898 scopus 로고    scopus 로고
    • Molecular medicine of microRNAs: Structure, function and implications for diabetes
    • 18702835
    • Hennessy, E.; and L. O'driscoll. 2008. Molecular medicine of microRNAs: structure, function and implications for diabetes. Expert Reviews in Molecular Medicine 10: e24.
    • (2008) Expert Reviews in Molecular Medicine , vol.10 , pp. 24
    • Hennessy, E.1    O'Driscoll, L.2
  • 38
    • 23044462450 scopus 로고    scopus 로고
    • Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila
    • 1:CAS:528:DC%2BD2MXmslGhur8%3D
    • Jiang, F.; X. Ye, X. Liu, L. Fincher, D. Mckearin, and Q. Liu. 2005. Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes & Development 19: 1674-1679.
    • (2005) Genes & Development , vol.19 , pp. 1674-1679
    • Jiang, F.1    Ye, X.2    Liu, X.3    Fincher, L.4    McKearin, D.5    Liu, Q.6
  • 39
    • 35848945091 scopus 로고    scopus 로고
    • MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3
    • 17936263 1:CAS:528:DC%2BD2sXht1yltrfJ
    • Joglekar, M.V.; V.S. Parekh, S. Mehta, R.R. Bhonde, and A.A. Hardikar. 2007. MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Developmental Biology 311: 603-612.
    • (2007) Developmental Biology , vol.311 , pp. 603-612
    • Joglekar, M.V.1    Parekh, V.S.2    Mehta, S.3    Bhonde, R.R.4    Hardikar, A.A.5
  • 40
    • 33749080736 scopus 로고    scopus 로고
    • Prediction of human microRNA targets
    • 16957370 1:CAS:528:DC%2BD28XksFSnt7o%3D
    • John, B.; C. Sander, and D.S. Marks. 2006. Prediction of human microRNA targets. Methods in Molecular Biology 342: 101-113.
    • (2006) Methods in Molecular Biology , vol.342 , pp. 101-113
    • John, B.1    Sander, C.2    Marks, D.S.3
  • 42
    • 33845881411 scopus 로고    scopus 로고
    • Mechanisms linking obesity to insulin resistance and type 2 diabetes
    • 17167471 1:CAS:528:DC%2BD28XhtlShtrzP
    • Kahn, S.E.; R.L. Hull, and K.M. Utzschneider. 2006. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444: 840-846.
    • (2006) Nature , vol.444 , pp. 840-846
    • Kahn, S.E.1    Hull, R.L.2    Utzschneider, K.M.3
  • 44
    • 85046981444 scopus 로고    scopus 로고
    • MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2
    • 21878751 1:CAS:528:DC%2BC38XhsV2ltLk%3D
    • Karbiener, M.; C. Neuhold, P. Opriessnig, A. Prokesch, J.G. Bogner-Strauss, and M. Scheideler. 2011. MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2. RNA Biology 8: 850-860.
    • (2011) RNA Biology , vol.8 , pp. 850-860
    • Karbiener, M.1    Neuhold, C.2    Opriessnig, P.3    Prokesch, A.4    Bogner-Strauss, J.G.5    Scheideler, M.6
  • 45
    • 79960932477 scopus 로고    scopus 로고
    • MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus
    • 21829658 1:CAS:528:DC%2BC3MXhtV2ju7jJ
    • Karolina, D.S.; A. Armugam, S. Tavintharan, M.T. Wong, S.C. Lim, C.F. Sum, and K. Jeyaseelan. 2011. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 6: e22839.
    • (2011) PLoS One , vol.6 , pp. 22839
    • Karolina, D.S.1    Armugam, A.2    Tavintharan, S.3    Wong, M.T.4    Lim, S.C.5    Sum, C.F.6    Jeyaseelan, K.7
  • 46
    • 33344477448 scopus 로고    scopus 로고
    • Genomics of microRNA
    • 16446010 1:CAS:528:DC%2BD28XhvVWitLw%3D
    • Kim, V.N.; and J.W. Nam. 2006. Genomics of microRNA. Trends in Genetics 22: 165-173.
    • (2006) Trends in Genetics , vol.22 , pp. 165-173
    • Kim, V.N.1    Nam, J.W.2
  • 47
    • 78651293534 scopus 로고    scopus 로고
    • MiRBase: Integrating microRNA annotation and deep-sequencing data
    • 21037258
    • Kozomara, A.; and S. Griffiths-Jones. 2011. miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research 39: D152-D157.
    • (2011) Nucleic Acids Research , vol.39
    • Kozomara, A.1    Griffiths-Jones, S.2
  • 50
    • 0027751663 scopus 로고
    • The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
    • 8252621 1:CAS:528:DyaK2cXpslGqtA%3D%3D
    • Lee, R.C.; R.L. Feinbaum, and V. Ambros. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854.
    • (1993) Cell , vol.75 , pp. 843-854
    • Lee, R.C.1    Feinbaum, R.L.2    Ambros, V.3
  • 52
    • 8144225486 scopus 로고    scopus 로고
    • MicroRNA genes are transcribed by RNA polymerase II
    • 15372072 1:CAS:528:DC%2BD2cXotlCrsrs%3D
    • Lee, Y.; M. Kim, J. Han, K.H. Yeom, S. Lee, S.H. Baek, and V.N. Kim. 2004. MicroRNA genes are transcribed by RNA polymerase II. The EMBO Journal 23: 4051-4060.
    • (2004) The EMBO Journal , vol.23 , pp. 4051-4060
    • Lee, Y.1    Kim, M.2    Han, J.3    Yeom, K.H.4    Lee, S.5    Baek, S.H.6    Kim, V.N.7
  • 53
    • 11844278458 scopus 로고    scopus 로고
    • Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
    • 15652477 1:CAS:528:DC%2BD2MXot1ChsA%3D%3D
    • Lewis, B.P.; C.B. Burge, and D.P. Bartel. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15-20.
    • (2005) Cell , vol.120 , pp. 15-20
    • Lewis, B.P.1    Burge, C.B.2    Bartel, D.P.3
  • 54
    • 70349393847 scopus 로고    scopus 로고
    • Differential expression of microRNAs in mouse liver under aberrant energy metabolic status
    • 19372595 1:CAS:528:DC%2BD1MXhtVCgsrbO
    • Li, S.; X. Chen, H. Zhang, X. Liang, Y. Xiang, C. Yu, K. Zen, Y. Li, and C.Y. Zhang. 2009. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. Journal of Lipid Research 50: 1756-1765.
    • (2009) Journal of Lipid Research , vol.50 , pp. 1756-1765
    • Li, S.1    Chen, X.2    Zhang, H.3    Liang, X.4    Xiang, Y.5    Yu, C.6    Zen, K.7    Li, Y.8    Zhang, C.Y.9
  • 55
    • 77953376194 scopus 로고    scopus 로고
    • MiR-375 enhances palmitate-induced lipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin (V1) protein expression
    • 20224724 1:CAS:528:DC%2BC3cXhs1CjtL0%3D
    • Li, Y.; X. Xu, Y. Liang, S. Liu, H. Xiao, F. Li, H. Cheng, and Z. Fu. 2010. miR-375 enhances palmitate-induced lipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin (V1) protein expression. International Journal of Clinical and Experimental Pathology 3: 254-264.
    • (2010) International Journal of Clinical and Experimental Pathology , vol.3 , pp. 254-264
    • Li, Y.1    Xu, X.2    Liang, Y.3    Liu, S.4    Xiao, H.5    Li, F.6    Cheng, H.7    Fu, Z.8
  • 56
    • 63049108381 scopus 로고    scopus 로고
    • A role of miR-27 in the regulation of adipogenesis
    • 19348006 1:CAS:528:DC%2BD1MXksVKntrc%3D
    • Lin, Q.; Z. Gao, R.M. Alarcon, J. Ye, and Z. Yun. 2009. A role of miR-27 in the regulation of adipogenesis. The FEBS Journal 276: 2348-2358.
    • (2009) The FEBS Journal , vol.276 , pp. 2348-2358
    • Lin, Q.1    Gao, Z.2    Alarcon, R.M.3    Ye, J.4    Yun, Z.5
  • 58
    • 40149083894 scopus 로고    scopus 로고
    • Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs
    • 18177263 1:CAS:528:DC%2BD1cXivFequr8%3D
    • Lovis, P.; S. Gattesco, and R. Regazzi. 2008a. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biological Chemistry 389: 305-312.
    • (2008) Biological Chemistry , vol.389 , pp. 305-312
    • Lovis, P.1    Gattesco, S.2    Regazzi, R.3
  • 59
    • 58149350340 scopus 로고    scopus 로고
    • Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction
    • 18633110 1:CAS:528:DC%2BD1MXhs1Kntrg%3D
    • Lovis, P.; E. Roggli, D.R. Laybutt, S. Gattesco, J.Y. Yang, C. Widmann, A. Abderrahmani, and R. Regazzi. 2008b. Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57: 2728-2736.
    • (2008) Diabetes , vol.57 , pp. 2728-2736
    • Lovis, P.1    Roggli, E.2    Laybutt, D.R.3    Gattesco, S.4    Yang, J.Y.5    Widmann, C.6    Abderrahmani, A.7    Regazzi, R.8
  • 60
    • 77952346716 scopus 로고    scopus 로고
    • MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism
    • 20080987 1:CAS:528:DC%2BC3cXmtFKqtro%3D
    • Lu, H.; R.J. Buchan, and S.A. Cook. 2010. MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovascular Research 86: 410-420.
    • (2010) Cardiovascular Research , vol.86 , pp. 410-420
    • Lu, H.1    Buchan, R.J.2    Cook, S.A.3
  • 61
    • 0347988235 scopus 로고    scopus 로고
    • Nuclear export of microRNA precursors
    • 14631048 1:CAS:528:DC%2BD3sXhtVWhs73O
    • Lund, E.; S. Guttinger, A. Calado, J.E. Dahlberg, and U. Kutay. 2004. Nuclear export of microRNA precursors. Science 303: 95-98.
    • (2004) Science , vol.303 , pp. 95-98
    • Lund, E.1    Guttinger, S.2    Calado, A.3    Dahlberg, J.E.4    Kutay, U.5
  • 63
    • 29144431656 scopus 로고    scopus 로고
    • A human, ATP-independent, RISC assembly machine fueled by pre-miRNA
    • 1:CAS:528:DC%2BD28Xmt1U%3D
    • Maniataki, E.; and Z. Mourelatos. 2005. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes & Development 19: 2979-2990.
    • (2005) Genes & Development , vol.19 , pp. 2979-2990
    • Maniataki, E.1    Mourelatos, Z.2
  • 65
    • 7444254370 scopus 로고    scopus 로고
    • Medicine, metabolic defects tied to mitochondrial gene
    • 15498983 1:CAS:528:DC%2BD2cXovFOis7c%3D
    • Marx, J. 2004. Medicine, metabolic defects tied to mitochondrial gene. Science 306: 592-593.
    • (2004) Science , vol.306 , pp. 592-593
    • Marx, J.1
  • 66
    • 56649111420 scopus 로고    scopus 로고
    • Kinetics of Rab27a-dependent actions on vesicle docking and priming in pancreatic beta-cells
    • 18801842 1:CAS:528:DC%2BD1cXhsVKnsrnJ
    • Merrins, M.J.; and E.L. Stuenkel. 2008. Kinetics of Rab27a-dependent actions on vesicle docking and priming in pancreatic beta-cells. The Journal of Physiology 586: 5367-5381.
    • (2008) The Journal of Physiology , vol.586 , pp. 5367-5381
    • Merrins, M.J.1    Stuenkel, E.L.2
  • 67
    • 27944480498 scopus 로고    scopus 로고
    • Human microRNA (miR29b) expression controls the amount of branched chain alpha-ketoacid dehydrogenase complex in a cell
    • 16203741 1:CAS:528:DC%2BD2MXhtFymtb3K
    • Mersey, B.D.; P. Jin, and D.J. Danner. 2005. Human microRNA (miR29b) expression controls the amount of branched chain alpha-ketoacid dehydrogenase complex in a cell. Human Molecular Genetics 14: 3371-3377.
    • (2005) Human Molecular Genetics , vol.14 , pp. 3371-3377
    • Mersey, B.D.1    Jin, P.2    Danner, D.J.3
  • 69
    • 77953780835 scopus 로고    scopus 로고
    • MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis
    • 20466882 1:CAS:528:DC%2BC3cXnsVWntrY%3D
    • Najafi-Shoushtari, S.H.; F. Kristo, Y. Li, T. Shioda, D.E. Cohen, R.E. Gerszten, and A.M. Naar. 2010. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328: 1566-1569.
    • (2010) Science , vol.328 , pp. 1566-1569
    • Najafi-Shoushtari, S.H.1    Kristo, F.2    Li, Y.3    Shioda, T.4    Cohen, D.E.5    Gerszten, R.E.6    Naar, A.M.7
  • 73
    • 3142729150 scopus 로고    scopus 로고
    • Distinct roles for argonaute proteins in small RNA-directed RNA cleavage pathways
    • 1:CAS:528:DC%2BD2cXlvFKltrk%3D
    • Okamura, K.; A. Ishizuka, H. Siomi, and M.C. Siomi. 2004. Distinct roles for argonaute proteins in small RNA-directed RNA cleavage pathways. Genes & Development 18: 1655-1666.
    • (2004) Genes & Development , vol.18 , pp. 1655-1666
    • Okamura, K.1    Ishizuka, A.2    Siomi, H.3    Siomi, M.C.4
  • 74
    • 77749299066 scopus 로고    scopus 로고
    • MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation
    • Ortega, F.J.; J.M. Moreno-Navarrete, G. Pardo, M. Sabater, M. Hummel, A. Ferrer, J.I. Rodriguez-Hermosa, B. Ruiz, W. Ricart, B. Peral, and J.M. Fernandez-Real. 2010. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One 5: e9022.
    • (2010) PLoS One , vol.5
    • Ortega, F.J.1    Moreno-Navarrete, J.M.2
  • 76
    • 77954859197 scopus 로고    scopus 로고
    • The role of mitochondria in the pathogenesis of type 2 diabetes
    • 20156986 1:CAS:528:DC%2BC3cXptl2ksbo%3D
    • Patti, M.E.; and S. Corvera. 2010. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocrine Reviews 31: 364-395.
    • (2010) Endocrine Reviews , vol.31 , pp. 364-395
    • Patti, M.E.1    Corvera, S.2
  • 78
    • 33846277696 scopus 로고    scopus 로고
    • Repression of protein synthesis by miRNAs: How many mechanisms?
    • 17197185 1:CAS:528:DC%2BD2sXisleitbw%3D
    • Pillai, R.S.; S.N. Bhattacharyya, and W. Filipowicz. 2007. Repression of protein synthesis by miRNAs: How many mechanisms? Trends in Cell Biology 17: 118-126.
    • (2007) Trends in Cell Biology , vol.17 , pp. 118-126
    • Pillai, R.S.1    Bhattacharyya, S.N.2    Filipowicz, W.3
  • 82
    • 79952846843 scopus 로고    scopus 로고
    • Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic beta-islets
    • 21288303 1:CAS:528:DC%2BC3MXkslSrtr8%3D
    • Ramachandran, D.; U. Roy, S. Garg, S. Ghosh, S. Pathak, and U. Kolthur-Seetharam. 2011. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic beta-islets. The FEBS Journal 278: 1167-1174.
    • (2011) The FEBS Journal , vol.278 , pp. 1167-1174
    • Ramachandran, D.1    Roy, U.2    Garg, S.3    Ghosh, S.4    Pathak, S.5    Kolthur-Seetharam, U.6
  • 83
    • 6344281172 scopus 로고    scopus 로고
    • Identification of mammalian microRNA host genes and transcription units
    • 15364901 1:CAS:528:DC%2BD2cXotl2hu7w%3D
    • Rodriguez, A.; S. Griffiths-Jones, J.L. Ashurst, and A. Bradley. 2004. Identification of mammalian microRNA host genes and transcription units. Genome Research 14: 1902-1910.
    • (2004) Genome Research , vol.14 , pp. 1902-1910
    • Rodriguez, A.1    Griffiths-Jones, S.2    Ashurst, J.L.3    Bradley, A.4
  • 84
    • 77951158889 scopus 로고    scopus 로고
    • Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells
    • 20086228 1:CAS:528:DC%2BC3cXltFSmt7k%3D
    • Roggli, E.; A. Britan, S. Gattesco, N. Lin-Marq, A. Abderrahmani, P. Meda, and R. Regazzi. 2010. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59: 978-986.
    • (2010) Diabetes , vol.59 , pp. 978-986
    • Roggli, E.1    Britan, A.2    Gattesco, S.3    Lin-Marq, N.4    Abderrahmani, A.5    Meda, P.6    Regazzi, R.7
  • 85
    • 84858776574 scopus 로고    scopus 로고
    • MicroRNAs in metabolism and metabolic disorders
    • 22436747 1:CAS:528:DC%2BC38XksVehtrc%3D
    • Rottiers, V.; and A.M. Naar. 2012. MicroRNAs in metabolism and metabolic disorders. Nature Reviews Molecular Cell Biology 13: 239-250.
    • (2012) Nature Reviews Molecular Cell Biology , vol.13 , pp. 239-250
    • Rottiers, V.1    Naar, A.M.2
  • 87
    • 79953048345 scopus 로고    scopus 로고
    • The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes
    • 21464990 1:CAS:528:DC%2BC3MXksFCgsLc%3D
    • Ryu, H.S.; S.Y. Park, D. Ma, J. Zhang, and W. Lee. 2011. The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLoS One 6: e17343.
    • (2011) PLoS One , vol.6 , pp. 17343
    • Ryu, H.S.1    Park, S.Y.2    Ma, D.3    Zhang, J.4    Lee, W.5
  • 88
    • 84861093038 scopus 로고    scopus 로고
    • MicroRNAs: Emerging roles in lipid and lipoprotein metabolism
    • 22488426 1:CAS:528:DC%2BC38XmvVKmt7Y%3D
    • Sacco, J.; and K. Adeli. 2012. MicroRNAs: emerging roles in lipid and lipoprotein metabolism. Current Opinion in Lipidology 23: 220-225.
    • (2012) Current Opinion in Lipidology , vol.23 , pp. 220-225
    • Sacco, J.1    Adeli, K.2
  • 89
    • 22744454230 scopus 로고    scopus 로고
    • Processing of pre-microRNAs by the Dicer-1-loquacious complex in Drosophila cells
    • 15918769
    • Saito, K.; A. Ishizuka, H. Siomi, and M.C. Siomi. 2005. Processing of pre-microRNAs by the Dicer-1-loquacious complex in Drosophila cells. PLoS Biology 3: e235.
    • (2005) PLoS Biology , vol.3 , pp. 235
    • Saito, K.1    Ishizuka, A.2    Siomi, H.3    Siomi, M.C.4
  • 90
    • 84857861919 scopus 로고    scopus 로고
    • Mechanisms for insulin resistance: Common threads and missing links
    • 22385956 1:CAS:528:DC%2BC38XjtlSgtrg%3D
    • Samuel, V.T.; and G.I. Shulman. 2012. Mechanisms for insulin resistance: Common threads and missing links. Cell 148: 852-871.
    • (2012) Cell , vol.148 , pp. 852-871
    • Samuel, V.T.1    Shulman, G.I.2
  • 91
    • 0037129721 scopus 로고    scopus 로고
    • Circulating concentrations of insulin-like growth factor-I and development of glucose intolerance: A prospective observational study
    • 12049864 1:CAS:528:DC%2BD38XktFKjtr8%3D
    • Sandhu, M.S.; A.H. Heald, J.M. Gibson, J.K. Cruickshank, D.B. Dunger, and N.J. Wareham. 2002. Circulating concentrations of insulin-like growth factor-I and development of glucose intolerance: A prospective observational study. Lancet 359: 1740-1745.
    • (2002) Lancet , vol.359 , pp. 1740-1745
    • Sandhu, M.S.1    Heald, A.H.2    Gibson, J.M.3    Cruickshank, J.K.4    Dunger, D.B.5    Wareham, N.J.6
  • 92
    • 66149120204 scopus 로고    scopus 로고
    • Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis
    • 19272382
    • Sekine, S.; R. Ogawa, R. Ito, N. Hiraoka, M.T. Mcmanus, Y. Kanai, and M. Hebrok. 2009a. Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology 136(2304-2315): e1-e4.
    • (2009) Gastroenterology , vol.136 , Issue.2304-2315
    • Sekine, S.1    Ogawa, R.2    Ito, R.3    Hiraoka, N.4    McManus, M.T.5    Kanai, Y.6    Hebrok, M.7
  • 94
    • 73749083481 scopus 로고    scopus 로고
    • Global estimates of the prevalence of diabetes for 2010 and 2030
    • 19896746 1:STN:280:DC%2BC3c%2Fot1Witg%3D%3D
    • Shaw, J.E.; R.A. Sicree, and P.Z. Zimmet. 2010. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice 87: 4-14.
    • (2010) Diabetes Research and Clinical Practice , vol.87 , pp. 4-14
    • Shaw, J.E.1    Sicree, R.A.2    Zimmet, P.Z.3
  • 95
    • 33749239623 scopus 로고    scopus 로고
    • The metabolic syndrome: Role of skeletal muscle metabolism
    • 17008303 1:CAS:528:DC%2BD28Xht1Oksr7K
    • Stump, C.S.; E.J. Henriksen, Y. Wei, and J.R. Sowers. 2006. The metabolic syndrome: Role of skeletal muscle metabolism. Annals of Medicine 38: 389-402.
    • (2006) Annals of Medicine , vol.38 , pp. 389-402
    • Stump, C.S.1    Henriksen, E.J.2    Wei, Y.3    Sowers, J.R.4
  • 96
    • 78650554763 scopus 로고    scopus 로고
    • MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression
    • 21146880 1:CAS:528:DC%2BC3cXhs1Wkur3N
    • Sun, L.L.; B.G. Jiang, W.T. Li, J.J. Zou, Y.Q. Shi, and Z.M. Liu. 2011. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Research and Clinical Practice 91: 94-100.
    • (2011) Diabetes Research and Clinical Practice , vol.91 , pp. 94-100
    • Sun, L.L.1    Jiang, B.G.2    Li, W.T.3    Zou, J.J.4    Shi, Y.Q.5    Liu, Z.M.6
  • 97
    • 84856415487 scopus 로고    scopus 로고
    • The role of mitochondria in insulin resistance and type 2 diabetes mellitus - Nature reviews
    • 1:CAS:528:DC%2BC38XhtlKmu7Y%3D
    • Szendroedi, J.; E. Phielix, and M. Roden. 2012. The role of mitochondria in insulin resistance and type 2 diabetes mellitus - nature reviews. Endocrinology 8: 92-103.
    • (2012) Endocrinology , vol.8 , pp. 92-103
    • Szendroedi, J.1    Phielix, E.2    Roden, M.3
  • 99
    • 58249107416 scopus 로고    scopus 로고
    • Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription
    • 19096044 1:CAS:528:DC%2BD1MXhs1Oju7w%3D
    • Tang, X.; L. Muniappan, G. Tang, and S. Ozcan. 2009. Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA 15: 287-293.
    • (2009) RNA , vol.15 , pp. 287-293
    • Tang, X.1    Muniappan, L.2    Tang, G.3    Ozcan, S.4
  • 100
    • 55049097738 scopus 로고    scopus 로고
    • Role of microRNAs in diabetes
    • 18655850 1:CAS:528:DC%2BD1cXhtlGgsrrK
    • Tang, X.; G. Tang, and S. Ozcan. 2008. Role of microRNAs in diabetes. Biochimica et Biophysica Acta 1779: 697-701.
    • (2008) Biochimica et Biophysica Acta , vol.1779 , pp. 697-701
    • Tang, X.1    Tang, G.2    Ozcan, S.3
  • 103
    • 80054074560 scopus 로고    scopus 로고
    • Synergy of microRNA and stem cell: A novel therapeutic approach for diabetes mellitus and cardiovascular diseases
    • 21864292 1:CAS:528:DC%2BC3MXhtlChurfJ
    • Tyagi, A.C.; U. Sen, and P.K. Mishra. 2011. Synergy of microRNA and stem cell: A novel therapeutic approach for diabetes mellitus and cardiovascular diseases. Current Diabetes Reviews 7: 367-376.
    • (2011) Current Diabetes Reviews , vol.7 , pp. 367-376
    • Tyagi, A.C.1    Sen, U.2    Mishra, P.K.3
  • 104
    • 79251581020 scopus 로고    scopus 로고
    • The art of microRNA research
    • 21252150
    • Van Rooij, E. 2011. The art of microRNA research. Circulation Research 108: 219-234.
    • (2011) Circulation Research , vol.108 , pp. 219-234
    • Van Rooij, E.1
  • 105
    • 84863150557 scopus 로고    scopus 로고
    • MiR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets
    • 22315319 1:CAS:528:DC%2BC38XovFegtbY%3D
    • Wijesekara, N.; L.H. Zhang, M.H. Kang, T. Abraham, A. Bhattacharjee, G.L. Warnock, C.B. Verchere, and M.R. Hayden. 2012. miR-33a modulates ABCA1 expression, cholesterol accumulation, and insulin secretion in pancreatic islets. Diabetes 61: 653-658.
    • (2012) Diabetes , vol.61 , pp. 653-658
    • Wijesekara, N.1    Zhang, L.H.2    Kang, M.H.3    Abraham, T.4    Bhattacharjee, A.5    Warnock, G.L.6    Verchere, C.B.7    Hayden, M.R.8
  • 106
    • 34249294856 scopus 로고    scopus 로고
    • Energizing miRNA research: A review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways
    • 17521938 1:CAS:528:DC%2BD2sXmtVejsL8%3D
    • Wilfred, B.R.; W.X. Wang, and P.T. Nelson. 2007. Energizing miRNA research: A review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Molecular Genetics and Metabolism 91: 209-217.
    • (2007) Molecular Genetics and Metabolism , vol.91 , pp. 209-217
    • Wilfred, B.R.1    Wang, W.X.2    Nelson, P.T.3
  • 107
    • 65549144017 scopus 로고    scopus 로고
    • MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity
    • 19188425 1:CAS:528:DC%2BD1MXls1Sqs7o%3D
    • Xie, H.; B. Lim, and H.F. Lodish. 2009. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58: 1050-1057.
    • (2009) Diabetes , vol.58 , pp. 1050-1057
    • Xie, H.1    Lim, B.2    Lodish, H.F.3
  • 110
    • 79960565215 scopus 로고    scopus 로고
    • Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis
    • 21767385 1:CAS:528:DC%2BC3MXhtVGqsLzK
    • Zaragosi, L.E.; B. Wdziekonski, K.L. Brigand, P. Villageois, B. Mari, R. Waldmann, C. Dani, and P. Barbry. 2011. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biology 12: R64.
    • (2011) Genome Biology , vol.12 , pp. 64
    • Zaragosi, L.E.1    Wdziekonski, B.2    Brigand, K.L.3    Villageois, P.4    Mari, B.5    Waldmann, R.6    Dani, C.7    Barbry, P.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.