메뉴 건너뛰기




Volumn 117, Issue , 2013, Pages 98-106

A PSO and pattern search based memetic algorithm for SVMs parameters optimization

Author keywords

Memetic algorithms; Parameters optimization; Particle swarm optimization; Pattern search; Support vector machines

Indexed keywords

EXPLORATION AND EXPLOITATION; LOCAL REFINEMENT; MEMETIC ALGORITHMS; OPTIMUM SOLUTION; PARAMETERS OPTIMIZATION; PARTICLE SWARM OPTIMIZATION ALGORITHM; PATTERN SEARCH; POTENTIAL REGION;

EID: 84878941786     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.01.027     Document Type: Article
Times cited : (181)

References (40)
  • 4
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O., Vapnik V., Bousqet O., Mukherjee S. Choosing multiple parameters for support vector machines. Mach. Learn. 2002, 46(1):131-159.
    • (2002) Mach. Learn. , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousqet, O.3    Mukherjee, S.4
  • 5
    • 0036738840 scopus 로고    scopus 로고
    • Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
    • Keerthi S.S. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Trans. Neural Networ. 2002, 13(5):1225-1229.
    • (2002) IEEE Trans. Neural Networ. , vol.13 , Issue.5 , pp. 1225-1229
    • Keerthi, S.S.1
  • 6
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SVM hyperparameters
    • Duan K., Keerthi S.S., Poo A.N. Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 2003, 51:41-59.
    • (2003) Neurocomputing , vol.51 , pp. 41-59
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3
  • 7
    • 0141430928 scopus 로고    scopus 로고
    • Radius margin bounds for support vector machines with the RBF kernel
    • Chung K.M., Kao W.C., Sun C.L., Wang L.L., Lin C.J. Radius margin bounds for support vector machines with the RBF kernel. Neural Comput. 2003, 15:2643-2681.
    • (2003) Neural Comput. , vol.15 , pp. 2643-2681
    • Chung, K.M.1    Kao, W.C.2    Sun, C.L.3    Wang, L.L.4    Lin, C.J.5
  • 8
    • 22844442782 scopus 로고    scopus 로고
    • Automatic model selection for the optimization of SVM kernels
    • Ayat N.E., Cheriet M., Suen C.Y. Automatic model selection for the optimization of SVM kernels. Patt. Recogn. 2005, 38(10):1733-1745.
    • (2005) Patt. Recogn. , vol.38 , Issue.10 , pp. 1733-1745
    • Ayat, N.E.1    Cheriet, M.2    Suen, C.Y.3
  • 9
    • 33751033588 scopus 로고    scopus 로고
    • Optimizing resources in model selection for support vector machine
    • Adankon M.M., Cheriet M. Optimizing resources in model selection for support vector machine. Patt. Recogn. 2007, 40(3):953-963.
    • (2007) Patt. Recogn. , vol.40 , Issue.3 , pp. 953-963
    • Adankon, M.M.1    Cheriet, M.2
  • 10
    • 57049126274 scopus 로고    scopus 로고
    • Two criteria for model selection in multiclass support vector machines
    • Wang L., Xue P., Chan K.L. Two criteria for model selection in multiclass support vector machines. IEEE Trans. Syst. Man Cybern. Part B-Cybernetics 2008, 38(6):1432-1448.
    • (2008) IEEE Trans. Syst. Man Cybern. Part B-Cybernetics , vol.38 , Issue.6 , pp. 1432-1448
    • Wang, L.1    Xue, P.2    Chan, K.L.3
  • 11
    • 68249088215 scopus 로고    scopus 로고
    • Model selection for the LS-SVM. Application to handwriting recognition
    • Adankon M.M., Cheriet M. Model selection for the LS-SVM. Application to handwriting recognition. Patt. Recogn. 2009, 42(12):3264-3270.
    • (2009) Patt. Recogn. , vol.42 , Issue.12 , pp. 3264-3270
    • Adankon, M.M.1    Cheriet, M.2
  • 12
    • 77952542640 scopus 로고    scopus 로고
    • Tuning SVM parameters by using a hybrid CLPSO-BFGS algorithm
    • Li S., Tan M. Tuning SVM parameters by using a hybrid CLPSO-BFGS algorithm. Neurocomputing 2010, 73:2089-2096.
    • (2010) Neurocomputing , vol.73 , pp. 2089-2096
    • Li, S.1    Tan, M.2
  • 13
    • 67649403178 scopus 로고    scopus 로고
    • Fast and efficient strategies for model selection of Gaussian support vector machine
    • Xu Z.B., Dai M.W., Meng D.Y. Fast and efficient strategies for model selection of Gaussian support vector machine. IEEE Trans. Syst. Man Cybern. Part B-Cybernetics 2009, 39(5):1292-1307.
    • (2009) IEEE Trans. Syst. Man Cybern. Part B-Cybernetics , vol.39 , Issue.5 , pp. 1292-1307
    • Xu, Z.B.1    Dai, M.W.2    Meng, D.Y.3
  • 14
    • 10044295837 scopus 로고    scopus 로고
    • A stochastic optimization approach for parameter tuning of Support Vector Machines
    • J. Kittler, M. Petrou, M. Nixon (Eds.), Proceedings of the 17th International Conference on Pattern Recognition, vol 4, IEEE Computer Soc, Los Alamitos
    • F. Imbault, K. Lebart, A stochastic optimization approach for parameter tuning of Support Vector Machines, in: J. Kittler, M. Petrou, M. Nixon (Eds.), Proceedings of the 17th International Conference on Pattern Recognition, vol 4, IEEE Computer Soc, Los Alamitos, 2004, pp. 597-600.
    • (2004) , pp. 597-600
    • Imbault, F.1    Lebart, K.2
  • 15
    • 56549111881 scopus 로고    scopus 로고
    • A novel LS-SVMs hyper-parameter selection based on particle swarm optimization
    • Guo X.C., Yang J.H., Wu C.G., Wang C.Y., Liang Y.C. A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing 2008, 71:3211-3215.
    • (2008) Neurocomputing , vol.71 , pp. 3211-3215
    • Guo, X.C.1    Yang, J.H.2    Wu, C.G.3    Wang, C.Y.4    Liang, Y.C.5
  • 17
    • 78650195131 scopus 로고    scopus 로고
    • An ACO-based algorithm for parameter optimization of support vector machines
    • Zhang X., Chen X., He Z. An ACO-based algorithm for parameter optimization of support vector machines. Expert Syst. Appl. 2010, 37(9):6618-6628.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.9 , pp. 6618-6628
    • Zhang, X.1    Chen, X.2    He, Z.3
  • 18
    • 82455210873 scopus 로고    scopus 로고
    • Combining meta-learning and search techniques to select parameters for support vector machines
    • Gomes T., Prudencio R., Soares C., Rossi A., Carvalho A. Combining meta-learning and search techniques to select parameters for support vector machines. Neurocomputing 2012, 75:3-13.
    • (2012) Neurocomputing , vol.75 , pp. 3-13
    • Gomes, T.1    Prudencio, R.2    Soares, C.3    Rossi, A.4    Carvalho, A.5
  • 19
    • 84861845640 scopus 로고    scopus 로고
    • A dynamic model selection strategy for support vector machine classifiers
    • Kapp M.N., Sabourin R., Maupin P. A dynamic model selection strategy for support vector machine classifiers. Appl. Soft Comput. 2012, 12(8):2550-2565.
    • (2012) Appl. Soft Comput. , vol.12 , Issue.8 , pp. 2550-2565
    • Kapp, M.N.1    Sabourin, R.2    Maupin, P.3
  • 20
    • 0002595027 scopus 로고
    • A 'memetic' approach for the traveling salesman problem implementation of a computational ecology for combinatorial optimization on message-passing systems
    • Moscato P., Norman M.G. A 'memetic' approach for the traveling salesman problem implementation of a computational ecology for combinatorial optimization on message-passing systems. Parallel Comput. Transputer Appl. 1992, 177-186.
    • (1992) Parallel Comput. Transputer Appl. , pp. 177-186
    • Moscato, P.1    Norman, M.G.2
  • 21
    • 0009015060 scopus 로고
    • On evolution search optimization genetic algorithms and martial arts: towards memetic algorithms
    • C3P Report
    • P. Moscato, On evolution search optimization genetic algorithms and martial arts: towards memetic algorithms, caltech concurrent computation program, C3P Report, 826 (1989).
    • (1989) caltech concurrent computation program , vol.826
    • Moscato, P.1
  • 22
    • 34247380230 scopus 로고    scopus 로고
    • Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems
    • Tang J., Lim M.H., Ong Y.S. Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Comput. 2007, 11(9):873-888.
    • (2007) Soft Comput. , vol.11 , Issue.9 , pp. 873-888
    • Tang, J.1    Lim, M.H.2    Ong, Y.S.3
  • 23
    • 4544226146 scopus 로고    scopus 로고
    • Effective memetic algorithms for VLSI design=genetic algorithms+local search plus multi-level clustering
    • Areibi S., Yang Z. Effective memetic algorithms for VLSI design=genetic algorithms+local search plus multi-level clustering. Evol. Comput. 2004, 12(3):327-353.
    • (2004) Evol. Comput. , vol.12 , Issue.3 , pp. 327-353
    • Areibi, S.1    Yang, Z.2
  • 24
    • 77749286227 scopus 로고    scopus 로고
    • Strength pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization
    • Elhossini A., Areibi S., Dony R. Strength pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization. Evol. Comput. 2010, 18(1):127-156.
    • (2010) Evol. Comput. , vol.18 , Issue.1 , pp. 127-156
    • Elhossini, A.1    Areibi, S.2    Dony, R.3
  • 25
    • 76149138011 scopus 로고    scopus 로고
    • HCS: a new local search strategy for memetic multiobjective evolutionary algorithms
    • Lara A., Sanchez G., Coello C., Schuetze O. HCS: a new local search strategy for memetic multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 2010, 14(1):112-132.
    • (2010) IEEE Trans. Evol. Comput. , vol.14 , Issue.1 , pp. 112-132
    • Lara, A.1    Sanchez, G.2    Coello, C.3    Schuetze, O.4
  • 28
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time series forecasting
    • Tay F.E.H., Cao L.J. Application of support vector machines in financial time series forecasting. Omega 2001, 29(4):309-317.
    • (2001) Omega , vol.29 , Issue.4 , pp. 309-317
    • Tay, F.E.H.1    Cao, L.J.2
  • 29
    • 80054688019 scopus 로고    scopus 로고
    • A multi-facet survey on memetic computation
    • Chen X., Ong Y., Lim M., Tan K. A multi-facet survey on memetic computation. IEEE Trans. Evol. Comput. 2011, 15(5):591-607.
    • (2011) IEEE Trans. Evol. Comput. , vol.15 , Issue.5 , pp. 591-607
    • Chen, X.1    Ong, Y.2    Lim, M.3    Tan, K.4
  • 30
    • 84855278833 scopus 로고    scopus 로고
    • Memetic algorithms and memetic computing optimization: a literature review
    • Neri F., Cotta C. Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol. Comput. 2012, 2:1-14.
    • (2012) Swarm Evol. Comput. , vol.2 , pp. 1-14
    • Neri, F.1    Cotta, C.2
  • 32
    • 33750267220 scopus 로고    scopus 로고
    • Multi-objective particle swarm optimizers: a survey of the state-of-the-art
    • Reyes M., Coello C. Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2006, 2(3):287-308.
    • (2006) Int. J. Comput. Intell. Res. , vol.2 , Issue.3 , pp. 287-308
    • Reyes, M.1    Coello, C.2
  • 34
    • 0003710380 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • Software available from
    • C. Chang, C. Lin, LIBSVM: a library for support vector machines, 2001. Software available from http://www.csie.ntu.edu.tw/cjlin/libsvm.
    • (2001)
    • Chang, C.1    Lin, C.2
  • 36
    • 2442576133 scopus 로고    scopus 로고
    • On the local convergence of pattern search
    • Dolan E.D., Lewis R.M., Torczon V. On the local convergence of pattern search. SIAM J. Optim. 2003, 14(2):567-583.
    • (2003) SIAM J. Optim. , vol.14 , Issue.2 , pp. 567-583
    • Dolan, E.D.1    Lewis, R.M.2    Torczon, V.3
  • 38
    • 4544245255 scopus 로고    scopus 로고
    • Real-coded memetic algorithms with crossover hill-climbing
    • Lozano M., Herrera F., Krasnogor N., Molina D. Real-coded memetic algorithms with crossover hill-climbing. Evol. Comput. 2004, 12(3):273-302.
    • (2004) Evol. Comput. , vol.12 , Issue.3 , pp. 273-302
    • Lozano, M.1    Herrera, F.2    Krasnogor, N.3    Molina, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.