메뉴 건너뛰기




Volumn 85, Issue 1-2, 2011, Pages 175-208

Model selection for primal SVM

Author keywords

Bilevel programming; Cross validation; Model selection; Nonconvex optimization; Support vector machines

Indexed keywords

BI-LEVEL PROGRAMMING; CROSS VALIDATION; MODEL SELECTION; NONCONVEX OPTIMIZATION; SUPPORT VECTOR;

EID: 80053050901     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-011-5246-7     Document Type: Article
Times cited : (42)

References (27)
  • 6
    • 0009403492 scopus 로고
    • Mathematical programs with optimization problems in the constraints
    • 359797 0263.90029 10.1287/opre.21.1.37
    • J. Bracken J. McGill 1973 Mathematical programs with optimization problems in the constraints Operations Research 21 37 44 359797 0263.90029 10.1287/opre.21.1.37
    • (1973) Operations Research , vol.21 , pp. 37-44
    • Bracken, J.1    McGill, J.2
  • 7
    • 0000431584 scopus 로고    scopus 로고
    • OSPR analysis of HPLC column capacity factors for a set of high-energy materials using electronic van der Waals surface property descriptors computed by transferable atom equivalent method
    • C. Breneman M. Rhem 1997 A QSPR analysis of hplc column capacity factors for a set of high-energy materials using electronic van der Waals surface property descriptors computed by the transferable atom equivalent method Journal of Computational Chemistry 18 2 182 197 10.1002/(SICI)1096-987X(19970130)18: 2<182::AID-JCC4>3.0.CO;2-R (Pubitemid 127598564)
    • (1997) Journal of Computational Chemistry , vol.18 , Issue.2 , pp. 182-197
    • Breneman, C.M.1    Rhem, M.2
  • 8
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O. Chapelle V. Vapnik O. Bousquet S. Mukherjee 2002 Choosing multiple parameters for support vector machines Machine Learning 46 1-3 131 159 0998.68101 10.1023/A:1012450327387 (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 10
    • 34250183387 scopus 로고    scopus 로고
    • An overview of bilevel programming
    • 2329985 1159.90483 10.1007/s10479-007-0176-2
    • B. Colson P. Marcotte G. Savard 2007 An overview of bilevel programming Annals of Operation Research 153 235 256 2329985 1159.90483 10.1007/s10479-007- 0176-2
    • (2007) Annals of Operation Research , vol.153 , pp. 235-256
    • Colson, B.1    Marcotte, P.2    Savard, G.3
  • 11
    • 0042737841 scopus 로고    scopus 로고
    • Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints
    • DOI 10.1080/0233193031000149894
    • S. Dempe 2003 Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints Optimization 52 333 359 1996321 1140.90493 10.1080/0233193031000149894 (Pubitemid 36995924)
    • (2003) Optimization , vol.52 , Issue.3 , pp. 333-359
    • Dempe, S.1
  • 13
    • 33746218517 scopus 로고    scopus 로고
    • Efficient optimization of support vector machine learning parameters for unbalanced datasets
    • DOI 10.1016/j.cam.2005.09.009, PII S0377042705005856
    • T. Eitrich B. Lang 2006 Efficient optimization of support vector machine learning parameters for unbalanced datasets Journal of Computational and Applied Mathematics 196 2 425 436 2249433 1097.68113 10.1016/j.cam.2005.09.009 (Pubitemid 44093872)
    • (2006) Journal of Computational and Applied Mathematics , vol.196 , Issue.2 , pp. 425-436
    • Eitrich, T.1    Lang, B.2
  • 14
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • 533250 0461.62059 10.2307/1268518
    • G. H. Golub M. Heath G. Wahba 1979 Generalized cross-validation as a method for choosing a good ridge parameter Technometrics 21 2 215 223 533250 0461.62059 10.2307/1268518
    • (1979) Technometrics , vol.21 , Issue.2 , pp. 215-223
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 16
    • 84864039082 scopus 로고    scopus 로고
    • An efficient method for gradient-based adaptation of hyperparameters in svm models
    • Keerthi, S., Sindhwani, V., & Chapelle, O. (2006). An efficient method for gradient-based adaptation of hyperparameters in svm models. In Neural information processing systems 18 (pp. 673-680).
    • (2006) Neural Information Processing Systems 18 , pp. 673-680
    • Keerthi, S.1    Sindhwani, V.2    Chapelle, O.3
  • 17
    • 73549124275 scopus 로고    scopus 로고
    • Bilevel model selection for support vector machines
    • P. Pardalos P. Hansen (eds)
    • Kunapuli, G., Bennett, K. P., & Pang, J. S. (2008). Bilevel model selection for support vector machines. In P. Pardalos & P. Hansen (Eds.), AMS: Vol. 45. Data mining and mathematical programming (pp. 129-158).
    • (2008) Data Mining and Mathematical Programming AMS , vol.45 , pp. 129-158
    • Kunapuli, G.1    Bennett, K.P.2    Pang, J.S.3
  • 21
    • 80054936825 scopus 로고    scopus 로고
    • A proximity control algorithm to minimize nonsmooth and nonconvex functions
    • 2541264 1162.49020
    • D. Noll O. Prot A. Rondepierre 2008 A proximity control algorithm to minimize nonsmooth and nonconvex functions Pacific Journal of Optimization 4 571 604 2541264 1162.49020
    • (2008) Pacific Journal of Optimization , vol.4 , pp. 571-604
    • Noll, D.1    Prot, O.2    Rondepierre, A.3
  • 23
  • 24
    • 84898947199 scopus 로고    scopus 로고
    • Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers
    • Seeger, M. (1999). Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers. In Advances in neural information processing systems (pp. 603-609).
    • (1999) Advances in Neural Information Processing Systems , pp. 603-609
    • Seeger, M.1
  • 25
    • 80053052854 scopus 로고    scopus 로고
    • Master's thesis, Courant Institute of Mathematical Science, New York University
    • Skajaa, A. (2010). Limited memory bfgs for nonsmooth optimization. Master's thesis, Courant Institute of Mathematical Science, New York University.
    • (2010) Limited Memory Bfgs for Nonsmooth Optimization
    • Skajaa, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.