메뉴 건너뛰기




Volumn 38, Issue 10, 2005, Pages 1733-1745

Automatic model selection for the optimization of SVM kernels

Author keywords

Empirical error; GACV; Kernel; Model selection; SVM; VC

Indexed keywords

AUTOMATIC PROGRAMMING; DATA REDUCTION; ERROR DETECTION; FUNCTION EVALUATION; LEARNING SYSTEMS; MATHEMATICAL MODELS; OPTIMIZATION;

EID: 22844442782     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2005.03.011     Document Type: Article
Times cited : (171)

References (42)
  • 2
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks Machine Learn. 20 3 1995 273 297
    • (1995) Machine Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 84902205493 scopus 로고    scopus 로고
    • Comparison of view-based object recognition algorithms using realistic 3d models
    • C. von der Malsburg, W. von Seelen, J.-C. Vorbrüggen, B. Sendhoff (Eds.), Artificial Neural Networks Springer, Bochum, Germany
    • V. Blanz, B. Schölkopf, H.H. Bülthoff, C. Burges, V. Vapnik, T. Vetter, Comparison of view-based object recognition algorithms using realistic 3d models, in: C. von der Malsburg, W. von Seelen, J.-C. Vorbrüggen, B. Sendhoff (Eds.), Artificial Neural Networks, vol. 1112 of Lecture Notes in Computer Science, Springer, Bochum, Germany, 1996, pp. 251-256.
    • (1996) Lecture Notes in Computer Science , vol.1112 , pp. 251-256
    • Blanz, V.1    Schölkopf, B.2    Bülthoff, H.H.3    Burges, C.4    Vapnik, V.5    Vetter, T.6
  • 9
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, and V.N. Vapnik Choosing multiple parameters for support vector machines Machine Learn. 46 1-3 2002 131 159
    • (2002) Machine Learn. , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.N.2
  • 12
    • 0040864042 scopus 로고
    • Minkowski-r back-propagation: Learning in connectionist models with non-euclidian error signals
    • D.Z. Anderson American Institute of Physics
    • S.J. Hanson, and D.J. Burr Minkowski-r back-propagation: learning in connectionist models with non-euclidian error signals D.Z. Anderson Advances in Neural Information Processing Systems 0: Proceedings of the 1987 Conference vol. 0 1988 American Institute of Physics 348 357
    • (1988) Advances in Neural Information Processing Systems 0: Proceedings of the 1987 Conference , vol.0 , pp. 348-357
    • Hanson, S.J.1    Burr, D.J.2
  • 13
    • 0003425662 scopus 로고    scopus 로고
    • Support vector machines: Training and applications
    • MIT
    • E. Osuna, R. Freund, F. Girosi, Support vector machines: training and applications, Technical Report, MIT, 1997.
    • (1997) Technical Report
    • Osuna, E.1    Freund, R.2    Girosi, F.3
  • 15
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • G. Baudat, and F. Anouar Generalized discriminant analysis using a kernel approach Neural Computation 12 10 2000 2385 2404
    • (2000) Neural Computation , vol.12 , Issue.10 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 16
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A.J. Smola, and K.R. Müller Nonlinear component analysis as a kernel eigenvalue problem Neural Comput. 10 5 1998 1299 1319
    • (1998) Neural Comput. , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.R.3
  • 18
    • 13344282709 scopus 로고    scopus 로고
    • On utilizing search methods to select subspace dimensions for kernel-based nonlinear subspace classifiers
    • S.-W. Kim, and B.J. Oommen On utilizing search methods to select subspace dimensions for kernel-based nonlinear subspace classifiers IEEE Trans. Pattern Anal. Mach. Intel. 27 1 2005 136 141
    • (2005) IEEE Trans. Pattern Anal. Mach. Intel. , vol.27 , Issue.1 , pp. 136-141
    • Kim, S.-W.1    Oommen, B.J.2
  • 19
    • 15044365893 scopus 로고    scopus 로고
    • On using prototype reduction schemes and classifier fusion strategies to optimize kernel-based nonlinear subspace methods
    • S.-W. Kim, and B.J. Oommen On using prototype reduction schemes and classifier fusion strategies to optimize kernel-based nonlinear subspace methods IEEE Trans. Pattern Anal. Mach. Intel. 27 3 2005 455 460
    • (2005) IEEE Trans. Pattern Anal. Mach. Intel. , vol.27 , Issue.3 , pp. 455-460
    • Kim, S.-W.1    Oommen, B.J.2
  • 21
    • 0022417790 scopus 로고
    • Computational vision and regularization theory
    • T. Poggio, V. Torre, and C. Koch Computational vision and regularization theory Nature 317 26 1985 314 319
    • (1985) Nature , vol.317 , Issue.26 , pp. 314-319
    • Poggio, T.1    Torre, V.2    Koch, C.3
  • 22
    • 84977125093 scopus 로고
    • Learning translation invariant recognition in a massively parallel network
    • J.W. de Bakker A.J. Nijman P.C. Treleaven Springer Berlin
    • G.E. Hinton Learning translation invariant recognition in a massively parallel network J.W. de Bakker A.J. Nijman P.C. Treleaven Proceedings of PARLE Conference on Parallel Architectures and Languages Europe 1987 Springer Berlin 1 13
    • (1987) Proceedings of PARLE Conference on Parallel Architectures and Languages Europe , pp. 1-13
    • Hinton, G.E.1
  • 24
    • 0016765357 scopus 로고
    • On optimal nonlinear associative recall
    • T. Poggio On optimal nonlinear associative recall Biol. Cyber. 19 1975 201 209
    • (1975) Biol. Cyber. , vol.19 , pp. 201-209
    • Poggio, T.1
  • 26
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • D. MacKay The evidence framework applied to classification networks Neural Comput. 4 5 1992 720 736
    • (1992) Neural Comput. , vol.4 , Issue.5 , pp. 720-736
    • MacKay, D.1
  • 30
    • 0002755771 scopus 로고    scopus 로고
    • Gaussian processes and svm: Mean field and leave-one-out
    • A.J. Smola P. Bartlett B. Schölkopf D. Schuurmans MIT press
    • M. Opper, and O. Winther Gaussian processes and svm: mean field and leave-one-out A.J. Smola P. Bartlett B. Schölkopf D. Schuurmans Advances in Large Margin Classifiers 2000 MIT press 311 326
    • (2000) Advances in Large Margin Classifiers , pp. 311-326
    • Opper, M.1    Winther, O.2
  • 31
    • 0004094721 scopus 로고    scopus 로고
    • Ph.D. Thesis, GMD First, Berlin, Germany
    • A. Smola, Learning with kernels, Ph.D. Thesis, GMD First, Berlin, Germany, 1998.
    • (1998) Learning with Kernels
    • Smola, A.1
  • 35
    • 84958774009 scopus 로고    scopus 로고
    • Optimization of the svm kernels using an empirical error minimization scheme
    • S.W. Lee, A. Verri (Eds.), Pattern Recognition with Support Vector Machines Berlin, Heidelberg, July
    • N.E. Ayat, M. Cheriet, C.Y. Suen, Optimization of the svm kernels using an empirical error minimization scheme, in: S.W. Lee, A. Verri (Eds.), Pattern Recognition with Support Vector Machines, Lecture Notes in Computer Science, vol. 2388, Berlin, Heidelberg, July 2002, pp. 354-369.
    • (2002) Lecture Notes in Computer Science , vol.2388 , pp. 354-369
    • Ayat, N.E.1    Cheriet, M.2    Suen, C.Y.3
  • 36
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • J. Platt Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods Adv. Large Margin Class. 10 3 1999
    • (1999) Adv. Large Margin Class. , vol.10 , Issue.3
    • Platt, J.1
  • 37
    • 10044295425 scopus 로고    scopus 로고
    • A note on platt's probabilistic outputs for support vector machines
    • National Taiwan University, Taiwan
    • H. Lin, C. Lin, R.C. Weng, A note on platt's probabilistic outputs for support vector machines, Technical Report, National Taiwan University, Taiwan, 2003.
    • (2003) Technical Report
    • Lin, H.1    Lin, C.2    Weng, R.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.