-
3
-
-
33751023917
-
-
V.N. Vapnik, Principles of risk minimization for learning theory, Advances in Neural Information Processing Systems, vol. 4, Morgan Kaufmann, San Mateo, CA, 1992, pp. 831-838.
-
-
-
-
4
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun Y., Bottom L., Bengio Y., and Haffner P. Gradient-based learning applied to document recognition. Proc. IEEE 86 (1998) 2278-2324
-
(1998)
Proc. IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottom, L.2
Bengio, Y.3
Haffner, P.4
-
5
-
-
33751031917
-
-
G. Wahba, Y. Lin, H. Zhang, Generalized approximate cross validation for support vector machines, or, another way to look at margin-like quantities, Technical Report, Department of Statistics, University of Wisconsin, February 25, 1999.
-
-
-
-
6
-
-
33751026046
-
-
T.S. Jaakkola, D. Haussler, Probabilistic kernel regression models, Workshop in Conference on Artificial Intelligence and Statistics, 1999.
-
-
-
-
7
-
-
33751052617
-
-
T. Joachims, Estimating the generalization performance of a svm efficiently, International Conference on Machine Learning, 2000, pp. 431-438.
-
-
-
-
9
-
-
0002755771
-
Gaussian processes and svm: mean field and leave-one-out
-
Smola A.J., Bartlett P.L., Schölkopf B., and Schuurmans D. (Eds), MIT Press, Cambridge, MA
-
Opper M., and Winther O. Gaussian processes and svm: mean field and leave-one-out. In: Smola A.J., Bartlett P.L., Schölkopf B., and Schuurmans D. (Eds). Advances in Large Margin Classifiers (2000), MIT Press, Cambridge, MA 311-326
-
(2000)
Advances in Large Margin Classifiers
, pp. 311-326
-
-
Opper, M.1
Winther, O.2
-
10
-
-
84899010634
-
-
O. Chapelle, V. Vapnik, Model selection for support vector machines, Adv. Neural Inf. Process. Syst., 1999, pp. 230-236.
-
-
-
-
11
-
-
0034264380
-
Bounds on error expectation for support vector machines
-
Vapnick V., and Chapelle O. Bounds on error expectation for support vector machines. Neural Comput. 12 9 (2000)
-
(2000)
Neural Comput.
, vol.12
, Issue.9
-
-
Vapnick, V.1
Chapelle, O.2
-
12
-
-
0036161011
-
Choosing ultiple parameters for support vector machines
-
Chapelle O., Vapnick V., Bousquet O., and Mukherjee S. Choosing ultiple parameters for support vector machines. Mach. Learn. 46 1 (2002) 131-159
-
(2002)
Mach. Learn.
, vol.46
, Issue.1
, pp. 131-159
-
-
Chapelle, O.1
Vapnick, V.2
Bousquet, O.3
Mukherjee, S.4
-
13
-
-
0141430928
-
Radius margin bounds for support vector machines with the rbf kernel
-
Chung K.-M., Kao W.-C., Wang L.-L., Sun C.-L., and Lin C.-J. Radius margin bounds for support vector machines with the rbf kernel. Neural Comput. 15 11 (2003) 2643-2681
-
(2003)
Neural Comput.
, vol.15
, Issue.11
, pp. 2643-2681
-
-
Chung, K.-M.1
Kao, W.-C.2
Wang, L.-L.3
Sun, C.-L.4
Lin, C.-J.5
-
14
-
-
22844442782
-
Automatic model selection for the optimization of the svm kernels
-
Ayat N.E., Cheriet M., and Suen C.Y. Automatic model selection for the optimization of the svm kernels. Pattern Recognition Comput.Sci. 38 10 (2005) 1733-1745
-
(2005)
Pattern Recognition Comput.Sci.
, vol.38
, Issue.10
, pp. 1733-1745
-
-
Ayat, N.E.1
Cheriet, M.2
Suen, C.Y.3
-
15
-
-
33751024720
-
-
N.E. Ayat, Sélection automatique de modèle des machines à vecteurs de support: Application à la reconnaissance d'images de chiffres manuscrits, Ph.D. Thesis, École de Technologie Supérieure, University of Quebec, 2003.
-
-
-
-
16
-
-
84893518733
-
-
N.E. Ayat, M. Cheriet, C.Y. Suen, Empirical error based optimization of svm kernels: application to digit image recognition, International Workshop on Handwriting Recognition, 2002, pp. 292-297.
-
-
-
-
17
-
-
0002570938
-
Kernel principal component analysis
-
Scholkopf B., Burges C.J.C., and Smola A.J. (Eds), MIT Press, Cambridge, MA
-
Scholkopf B., Smola A.J., and Muller K.-R. Kernel principal component analysis. In: Scholkopf B., Burges C.J.C., and Smola A.J. (Eds). Advances in Kernel Methods: Support Vector Machines (1998), MIT Press, Cambridge, MA 327-352
-
(1998)
Advances in Kernel Methods: Support Vector Machines
, pp. 327-352
-
-
Scholkopf, B.1
Smola, A.J.2
Muller, K.-R.3
-
20
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
-
Smola A.J., Bartlett P., Schoelkopf B., and Schuurmans D. (Eds)
-
Platt J. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Smola A.J., Bartlett P., Schoelkopf B., and Schuurmans D. (Eds). Advances in Large Margin Classifiers (2000) 61-74
-
(2000)
Advances in Large Margin Classifiers
, pp. 61-74
-
-
Platt, J.1
-
22
-
-
33751041293
-
-
H.-T. Lin, C.-J. Lin, R.C. Weng, A note on platts probabilistic outputs for support vector machines, Technical Report, May 2003.
-
-
-
-
23
-
-
0034241361
-
Gradient-based optimization of hyper-parameters
-
Bengio Y. Gradient-based optimization of hyper-parameters. Neural Comput. 12 8 (2000) 1889-1900
-
(2000)
Neural Comput.
, vol.12
, Issue.8
, pp. 1889-1900
-
-
Bengio, Y.1
-
24
-
-
33751035319
-
-
N.A. Syed, H. Liu, K.K. Sung, Incremental learning with support vector machines, in: International Joint Conference on Artificial Intelligence, 1999.
-
-
-
-
25
-
-
17144374074
-
Fast svm training algorithm with decomposition on very large data sets
-
Dong J.-X., Krzyzak A., and Suen C.Y. Fast svm training algorithm with decomposition on very large data sets. IEEE Trans. Pattern Anal. Mach. Intell. 27 4 (2005) 603-618
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, Issue.4
, pp. 603-618
-
-
Dong, J.-X.1
Krzyzak, A.2
Suen, C.Y.3
-
27
-
-
84957087567
-
-
M. Moreira, E. Mayoraz, Improved pairwise coupling classification with correcting classifiers, in: ECML, 1998, pp. 160-171.
-
-
-
-
28
-
-
33751047728
-
-
G.-H. Tzeng, Y.-J. Goo, C.-H. Wu, W.-C. Fang, A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy, Expert Systems With Applications, in press, corrected proof, available online 11 January 2006.
-
-
-
|