메뉴 건너뛰기




Volumn 40, Issue 3, 2007, Pages 953-963

Optimizing resources in model selection for support vector machine

Author keywords

Hyperparameters; Kernel; Model selection; Optimizing time; SVM

Indexed keywords

APPROXIMATION THEORY; DATA STRUCTURES; MATHEMATICAL MODELS; MATRIX ALGEBRA; OPTIMIZATION; QUADRATIC PROGRAMMING;

EID: 33751033588     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2006.06.012     Document Type: Article
Times cited : (37)

References (28)
  • 3
    • 33751023917 scopus 로고    scopus 로고
    • V.N. Vapnik, Principles of risk minimization for learning theory, Advances in Neural Information Processing Systems, vol. 4, Morgan Kaufmann, San Mateo, CA, 1992, pp. 831-838.
  • 4
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y., Bottom L., Bengio Y., and Haffner P. Gradient-based learning applied to document recognition. Proc. IEEE 86 (1998) 2278-2324
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottom, L.2    Bengio, Y.3    Haffner, P.4
  • 5
    • 33751031917 scopus 로고    scopus 로고
    • G. Wahba, Y. Lin, H. Zhang, Generalized approximate cross validation for support vector machines, or, another way to look at margin-like quantities, Technical Report, Department of Statistics, University of Wisconsin, February 25, 1999.
  • 6
    • 33751026046 scopus 로고    scopus 로고
    • T.S. Jaakkola, D. Haussler, Probabilistic kernel regression models, Workshop in Conference on Artificial Intelligence and Statistics, 1999.
  • 7
    • 33751052617 scopus 로고    scopus 로고
    • T. Joachims, Estimating the generalization performance of a svm efficiently, International Conference on Machine Learning, 2000, pp. 431-438.
  • 9
    • 0002755771 scopus 로고    scopus 로고
    • Gaussian processes and svm: mean field and leave-one-out
    • Smola A.J., Bartlett P.L., Schölkopf B., and Schuurmans D. (Eds), MIT Press, Cambridge, MA
    • Opper M., and Winther O. Gaussian processes and svm: mean field and leave-one-out. In: Smola A.J., Bartlett P.L., Schölkopf B., and Schuurmans D. (Eds). Advances in Large Margin Classifiers (2000), MIT Press, Cambridge, MA 311-326
    • (2000) Advances in Large Margin Classifiers , pp. 311-326
    • Opper, M.1    Winther, O.2
  • 10
    • 84899010634 scopus 로고    scopus 로고
    • O. Chapelle, V. Vapnik, Model selection for support vector machines, Adv. Neural Inf. Process. Syst., 1999, pp. 230-236.
  • 11
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • Vapnick V., and Chapelle O. Bounds on error expectation for support vector machines. Neural Comput. 12 9 (2000)
    • (2000) Neural Comput. , vol.12 , Issue.9
    • Vapnick, V.1    Chapelle, O.2
  • 12
    • 0036161011 scopus 로고    scopus 로고
    • Choosing ultiple parameters for support vector machines
    • Chapelle O., Vapnick V., Bousquet O., and Mukherjee S. Choosing ultiple parameters for support vector machines. Mach. Learn. 46 1 (2002) 131-159
    • (2002) Mach. Learn. , vol.46 , Issue.1 , pp. 131-159
    • Chapelle, O.1    Vapnick, V.2    Bousquet, O.3    Mukherjee, S.4
  • 13
    • 0141430928 scopus 로고    scopus 로고
    • Radius margin bounds for support vector machines with the rbf kernel
    • Chung K.-M., Kao W.-C., Wang L.-L., Sun C.-L., and Lin C.-J. Radius margin bounds for support vector machines with the rbf kernel. Neural Comput. 15 11 (2003) 2643-2681
    • (2003) Neural Comput. , vol.15 , Issue.11 , pp. 2643-2681
    • Chung, K.-M.1    Kao, W.-C.2    Wang, L.-L.3    Sun, C.-L.4    Lin, C.-J.5
  • 14
    • 22844442782 scopus 로고    scopus 로고
    • Automatic model selection for the optimization of the svm kernels
    • Ayat N.E., Cheriet M., and Suen C.Y. Automatic model selection for the optimization of the svm kernels. Pattern Recognition Comput.Sci. 38 10 (2005) 1733-1745
    • (2005) Pattern Recognition Comput.Sci. , vol.38 , Issue.10 , pp. 1733-1745
    • Ayat, N.E.1    Cheriet, M.2    Suen, C.Y.3
  • 15
    • 33751024720 scopus 로고    scopus 로고
    • N.E. Ayat, Sélection automatique de modèle des machines à vecteurs de support: Application à la reconnaissance d'images de chiffres manuscrits, Ph.D. Thesis, École de Technologie Supérieure, University of Quebec, 2003.
  • 16
    • 84893518733 scopus 로고    scopus 로고
    • N.E. Ayat, M. Cheriet, C.Y. Suen, Empirical error based optimization of svm kernels: application to digit image recognition, International Workshop on Handwriting Recognition, 2002, pp. 292-297.
  • 17
    • 0002570938 scopus 로고    scopus 로고
    • Kernel principal component analysis
    • Scholkopf B., Burges C.J.C., and Smola A.J. (Eds), MIT Press, Cambridge, MA
    • Scholkopf B., Smola A.J., and Muller K.-R. Kernel principal component analysis. In: Scholkopf B., Burges C.J.C., and Smola A.J. (Eds). Advances in Kernel Methods: Support Vector Machines (1998), MIT Press, Cambridge, MA 327-352
    • (1998) Advances in Kernel Methods: Support Vector Machines , pp. 327-352
    • Scholkopf, B.1    Smola, A.J.2    Muller, K.-R.3
  • 20
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • Smola A.J., Bartlett P., Schoelkopf B., and Schuurmans D. (Eds)
    • Platt J. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Smola A.J., Bartlett P., Schoelkopf B., and Schuurmans D. (Eds). Advances in Large Margin Classifiers (2000) 61-74
    • (2000) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.1
  • 22
    • 33751041293 scopus 로고    scopus 로고
    • H.-T. Lin, C.-J. Lin, R.C. Weng, A note on platts probabilistic outputs for support vector machines, Technical Report, May 2003.
  • 23
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyper-parameters
    • Bengio Y. Gradient-based optimization of hyper-parameters. Neural Comput. 12 8 (2000) 1889-1900
    • (2000) Neural Comput. , vol.12 , Issue.8 , pp. 1889-1900
    • Bengio, Y.1
  • 24
    • 33751035319 scopus 로고    scopus 로고
    • N.A. Syed, H. Liu, K.K. Sung, Incremental learning with support vector machines, in: International Joint Conference on Artificial Intelligence, 1999.
  • 25
    • 17144374074 scopus 로고    scopus 로고
    • Fast svm training algorithm with decomposition on very large data sets
    • Dong J.-X., Krzyzak A., and Suen C.Y. Fast svm training algorithm with decomposition on very large data sets. IEEE Trans. Pattern Anal. Mach. Intell. 27 4 (2005) 603-618
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.4 , pp. 603-618
    • Dong, J.-X.1    Krzyzak, A.2    Suen, C.Y.3
  • 27
    • 84957087567 scopus 로고    scopus 로고
    • M. Moreira, E. Mayoraz, Improved pairwise coupling classification with correcting classifiers, in: ECML, 1998, pp. 160-171.
  • 28
    • 33751047728 scopus 로고    scopus 로고
    • G.-H. Tzeng, Y.-J. Goo, C.-H. Wu, W.-C. Fang, A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy, Expert Systems With Applications, in press, corrected proof, available online 11 January 2006.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.